Заданный четырёхугольник АРТС - равнобедренная трапеция. В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4. Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х. Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36). Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36). По свойству вписанной окружности суммы оснований и боковых сторон равны. 3х + 3х = 2√(х² - 36) + 8√(х² - 36). 6х = 10√(х² - 36). Возведём обе части в квадрат. 64х² = 100х² - 3600. 64х² = 3600. х = √3600/√64 = 60/8= 15/2. Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.
Рёбра прямой призмы перпендикулярны плоскости основания.
Пусть плоскость m - искомая.
Тогда плоскость а основания является её ортогональной проекцией на плоскость, содержащую основание призмы.
Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью многоугольника и плоскостью проекции.
S (a)=S(m)•cos45°⇒
S(m)=S(a):cos45°
Формула площади параллелограмма
S=a•b•sinα, где а и b стороны параллелограмма, α - угол между ними.
В соответствии с заданием треугольники ВРТ и ВАС подобны с коэффициентом 1:4.
Обозначим точку касания окружности с отрезком РТ как точка F, а отрезок ВР за х, боковая сторона трапеции равна 3х.
Диаметр окружности и отрезок BF относятся как 1:3, поэтому BF = 18/3 = 6 см, а PF = √(х² - 36).
Верхнее основание трапеции - отрезок РТ равен 2√(х² - 36), а нижнее - в 4 раза больше, то есть АС = 8√(х² - 36).
По свойству вписанной окружности суммы оснований и боковых сторон равны.
3х + 3х = 2√(х² - 36) + 8√(х² - 36).
6х = 10√(х² - 36). Возведём обе части в квадрат.
64х² = 100х² - 3600.
64х² = 3600.
х = √3600/√64 = 60/8= 15/2.
Периметр АРТС равен (3х + 3х)*2 = 12х = 12*(15/2) = 6*15 = 90 см.
Пусть плоскость m - искомая.
Тогда плоскость а основания является её ортогональной проекцией на плоскость, содержащую основание призмы.
Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью многоугольника и плоскостью проекции.
S (a)=S(m)•cos45°⇒
S(m)=S(a):cos45°
Формула площади параллелограмма
S=a•b•sinα, где а и b стороны параллелограмма, α - угол между ними.
S(a)=4•5•sin30°=20•1/2=10 дм²
cos45°=√2/2 или иначе 1/√2
S(m)=10:(1/√2)=10√2 см²