∆ ABC~∆ AFE - оба прямоугольные с общим острым углом А.
Судя по отношения катета и гипотенузы в ∆ АFE, этот треугольник- египетский, значит, и ∆ АВС - египетский с отношением сторон 3:4:5 и коэффициентом подобия k=12:3=4, откуда АВ=5•4=20 см.
Полное решение:
∆ AEF~∆ ABC. Из подобия треугольников следует отношение ВС:EF=AB:AE
5. Пользуемся ответами от 3 и 4 задания.Сумма периметров треугольников АВС и DEF равна 16 см (7 см+9 см). Я не знаю, там нужно писать единицы измерения или нет.
1.угол N равен углу A,BC=12 CM=6 CN=4 найти AC
2.ВС ⊥ АС - значит, ∆ АВС прямоугольный.
∆ ABC~∆ AFE - оба прямоугольные с общим острым углом А.
Судя по отношения катета и гипотенузы в ∆ АFE, этот треугольник- египетский, значит, и ∆ АВС - египетский с отношением сторон 3:4:5 и коэффициентом подобия k=12:3=4, откуда АВ=5•4=20 см.
Полное решение:
∆ AEF~∆ ABC. Из подобия треугольников следует отношение ВС:EF=AB:AE
12:6=AB:10
6АВ=120 АВ=20 см
3.Дано :
СD = 4 , BC=9 ;
∠3 = ∠1 + ∠2 .
∠CDA =∠CAD +∠ DAB * * * ∠3 = ∠1 + ∠2 * * *
но
∠CDA = ∠B + ∠ DAB (как внешний угол ΔDAB )
следовательно ∠B = ∠CAD .
---
По первому признаку подобия ΔACD ~ ΔBCA
( ∠ C - общее и ∠CAD =∠B )
AC /BC =CD /AC ⇔ AC² =BC*CD ⇒ AC = √(BC*CD)
AC =√(BC*CD) = √(9*4) =3*2 =6.
ответ : AC = 6.
Объяснение:
Написала на картинке.
1. Каждая сторона треугольника меньше суммы двух других сторон. Пользуясь этой теоремой, пишем неравенства для сторон шестиугольника.
2. Неравенство для второго вопроса -
PK+KL+LM+MN+NR+PR < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR.
3. Неравенство для третьего вопроса -
2*(PK+KL+LM+MN+NR+PR) < PA+KA+DK+DL+LB+BM+ME+EN+NC+RC+PF+FR+(PK+KL+LM+MN+NR+PR).
4. На картинке.
5. Пользуемся ответами от 3 и 4 задания.Сумма периметров треугольников АВС и DEF равна 16 см (7 см+9 см). Я не знаю, там нужно писать единицы измерения или нет.
Вот такое неравенство в итоге получилось -
2*(PK+KL+LM+MN+NR+PR) < 16 см.
6. Логично, что поделить на 2.
Получаем, что -
2*(PK+KL+LM+MN+NR+PR) < 16 см
PK+KL+LM+MN+NR+PR < 8 см.
Это нам и нужно было доказать!