В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Yulia542
Yulia542
26.12.2022 16:27 •  Геометрия

12**. При симетрії відносно деякої точки К точка м(12; -1)
переходить у точку N(2; -3). Знайти координати точки, в яку при цій
симетрії перейде точка Р1;1).

Показать ответ
Ответ:
iriska198501
iriska198501
30.07.2021 22:03
Если на ребрах  тетраэдра  abcd отмечены точки v (на ребре ab), r (на ребре bd) и t (на ребре cd), а по условию нужно построить сечение  тетраэдра  плоскостью vrt, то постройте, прежде всего, прямую, по которой плоскость vrt будет пересекаться с плоскостью abc. в данном случае точка v будет общей для плоскостей vrt и abc. 2для того чтобы построить еще одну общую точку, продлите отрезки rt и bc до их пересечения в точке k (данная точка и будет второй общей точкой для плоскостей vrt и abc). из этого следует, что плоскости vrt и abc пересекаться будут по прямой vк. 3в свою очередь прямая vк пересечет ребро ас в точке l. таким образом, четырехугольник vrtl и является искомым сечением  тетраэдра, построить которое нужно было по условию . 4обратите внимание на то, что, если прямые rt и bc параллельны, то прямая rt параллельна грани авс, поэтому плоскость vrt пересекает данную грань по прямой vк', которая параллельна прямой rt. а точка l будет точкой пересечения отрезка ас с прямой vк'.  сечениететраэдра  будет все тем же четырехугольником vrtl. 5допустим, известны следующие исходные данные: точка q находится на боковой грани adb  тетраэдра  abcd. требуется построить сечение этого  тетраэдра, которое бы проходило через точку q и было бы параллельным основанию abc. 6ввиду того, что секущая плоскость параллельна основанию abc, она также будет параллельна прямым ав, вс и ас. а значит, секущая плоскость пересекает боковые грани  тетраэдра  abcd по прямым, которые параллельны сторонам треугольника-основания авс. 7проведите из точки q прямую параллельно отрезку ав и обозначьте точки пересечения данной прямой с ребрами ad и bd буквами m и n. 8затем через точку m проведите прямую, которая бы проходила параллельно отрезку ас, и обозначьте точку пересечения данной прямой с ребром cd буквой s. треугольник mns и есть искомым сечением.
0,0(0 оценок)
Ответ:
ЛинкаСимка
ЛинкаСимка
20.02.2021 01:14

1)  Точка, лежащая на единичной окружности имеет абсциссу, равную косинусу соответствующего угла, а ординату , равную синусу этого угла.

То есть, если точка А лежит на единичной окружности, то её координаты можно записать так:  A(\, cosa\, ;\, sina\, )  .

Основное тригонометрическое тождество имеет вид:  sin^2a+cos^2a=1 .

Поэтому проверяем это тождество для заданных координат.

A\Big(\, \dfrac{1}{2}\, ;-\dfrac{1}{2}\, \Big):\ \ \Big(\dfrac{1}{2}\Big)^2+\Big(-\dfrac{1}{2}\Big)^2=\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\ne 1\\\\\\B\Big(\dfrac{\sqrt3}{2}\, ;-\dfrac{1}{2}\, \Big):\ \ \Big(\dfrac{\sqrt3}{2}\Big)^2+\Big(-\dfrac{1}{2}\Big)^2=\dfrac{3}{4}+\dfrac{1}{4}=1\ \ \to \ \ B\in okryznosti\\\\\\C\Big(-\dfrac{\sqrt3}{4}\, ;\, \dfrac{1}{4}\, \Big):\ \ \Big(-\dfrac{\sqrt3}{4}\Big)^2+\Big(\dfrac{1}{4}\Big)^2=\dfrac{3}{16}+\dfrac{1}{16}=\dfrac{1}{4}\ne 1

D\Big(\; 0\, ;\, \dfrac{\sqrt2}{2}\Big):\ \ 0^2+\Big(\dfrac{\sqrt2}{2}\Big)^2=0+\dfrac{2}{4}=\dfrac{1}{2}\ne 1

На единичной окружности лежит точка  B\Big(\dfrac{\sqrt3}{2}\, ;-\dfrac{1}{2}\, \Big)  .

Найдём значение угла, соответствующего точке В, лежащей на единичной окружности.

cosa=\dfrac{\sqrt3}{2}\ \ ,\ \ sina=-\dfrac{1}{2}\ \ \Rightarrow \ \ \ a=-\dfrac{\pi}{6}+2\pi n\ ,\ n\in Z\\\\tga=\dfrac{sina}{cosa}=-\dfrac{1}{\sqrt3}=-\dfrac{\sqrt3}{3} \\\\ctga=\dfrac{1}{tga}=-\dfrac{3}{\sqrt3}=-\sqrt3

Смотри рисунок.

2)\ \ \Delta ABC\ ,\ \ AB=4\ ,\ BC=5\ .\ \angle B=60^\circ \\\\AC^2=4^2+5^2-2\cdot 4\cdot 5\cdot cos60^\circ =41-40\cdot \dfrac{1}{2}=21\ \ ,\ \ \underline {AC=\sqrt{21}\ }\\\\P=4+5+\sqrt{21}=\underline {9+\sqrt{21}\ }\\\\\dfrac{a}{sin\alpha }=2R\ \ \to \ \ R=\dfrac{AC}{2\cdot sin60^\circ }=\dfrac{\sqrt{21}}{2\cdot \frac{\sqrt3}{2}}=\sqrt{\dfrac{21}{3} }=\sqrt7

3)\ \ \dfrac{AC}{sinA}=\dfrac{AB}{sinC}=\dfrac{BC}{sinA}=2R\ \ ,\ \ \to \\\\\dfrac{AC}{sinB}=\dfrac{12}{sin50^\circ }=\dfrac{32}{sinA}\ \ ,\ \ \dfrac{AC}{sinB}=\dfrac{12}{0,7660}=\dfrac{32}{sinA}\\\\\\sinA=\dfrac{32\cdot 0,7660}{12}\approx 2,04271

Так как  sin любого угла не превосходит 1, то полученный результат говорит о том, что треугольника с такими размерами не существует. Решения задача не имеет .

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота