123 ! точки o и c расположены в разных полуплощадях относительно прямой ав. известно, что ао = ов и аов = 2(180-асв). докажите, что точки а в с лежат на окружности с центром о
Построим окружность с центром О. Т.к. Окружность -это геометрическое место точек, равноудаленных от центра, а по условию ОА=ОВ, значит точки А и В лежат на окружности, ОА и ОВ являются радиусами, АВ -хорда. Угол АОВ, образованный двумя радиусами, -центральный и равен 2(180-АСВ). Т.к. Точки О и С в разных полуплоскостях относительно АВ, то предположим, что С тоже лежит на окружности. Тогда угол АСВ является вписанным углом (вершина С-лежит на окружности, стороны СА и СВ пересекают окружность), опирающимся на дугу АВ. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит дуга АСВ равна 2(180-АСВ), тогда дуга АВ будет равна 360-2(180-АСВ)=2АСВ. Величина вписанного угла АСВ должна быть в два раза меньше центрального угла, опирающегося на ту же дугу АВ, проверяем угол АСВ=2АСВ/2=АСВ. Равенство верное, значит точка С тоже лежит на этой окружности, что и требовалось доказать.