13.2. Изобразите какой-нибудь прямоугольный треугольник, гипо- тенузой которого является отрезок AB, а вершина С находит- ся в одном из узлов сетки (рис. 13.6).
1. На данной прямой а отметим произвольную точку А.
2. Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
3. Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
4. Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а. (см. рис. 1)
5. Проведем окружность с центром в точке А с радиусом, равным данному отрезку k. Точки пересечения этой окружности с прямой b обозначим M и N. (см. рис. 2)
Точки М и N - точки, удаленные от точки пересечения прямых на расстояние, равное длине данного отрезка.
Все построение надо выполнять, конечно, на одном чертеже. Для наглядности построение последнего пункта выполнено отдельно.
Если рассмотреть один угол четырехугольника ABD, то центр вписанной в угол окружности будет лежать на биссектрисе угла АО... радиусы окружности, проведенные к сторонам угла в точки касания, _|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе (треугольник АОК=АОК1, треугольник BОК=BОК2)... если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) = 4.5*20 = 90
1. На данной прямой а отметим произвольную точку А.
2. Проведем окружность произвольного радиуса с центром в точке А. Точки пересечения окружности с прямой а обозначим В и С.
3. Проведем две окружности одинакового произвольного радиуса (большего половины отрезка ВС), с центрами в точках В и С.
4. Через точки пересечения этих окружностей (К и Н) проведем прямую b.
Прямая b - искомый перпендикуляр к прямой а. (см. рис. 1)
5. Проведем окружность с центром в точке А с радиусом, равным данному отрезку k. Точки пересечения этой окружности с прямой b обозначим M и N. (см. рис. 2)
Точки М и N - точки, удаленные от точки пересечения прямых на расстояние, равное длине данного отрезка.
Все построение надо выполнять, конечно, на одном чертеже. Для наглядности построение последнего пункта выполнено отдельно.
радиусы окружности, проведенные к сторонам угла в точки касания,
_|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе
(треугольник АОК=АОК1, треугольник BОК=BОК2)...
если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ
т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB
аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD
площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) =
4.5*20 = 90