В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История

14. Фігура складається з квадрата ABCD зі стороною
завдовжки 2 м і рівнобедреного прямокутного
трикутника ВМС, де вершина прямого кута М
лежить поза квадратом. Обчисліть довжину
найдовшого відрізка, що міститься у цій фігурі
A) √7 Б) √8 в) √10 г) √11​

Показать ответ
Ответ:
vladislava240203444
vladislava240203444
23.07.2020 04:31

1. Pabcd = 40 дм.  2. Sabc = 512 см².

Объяснение:

1. Свойство: Центр вписанной окружности является точкой пересечения биссектрис углов трапеции. Следовательно, треугольник COD - прямоугольный, так как сумма его острых углов равна 90° (так как в трапеции <C + < D = 180°,   =>  (1/2)*(<C+<D) =90°).

Тогда по Пифагору CD = √(OC²+OD²). Или

CD =  √(36+64) = 10 дм.  АВ = CD = 10 дм.

АВ+CD = 20 дм.

Свойство: Если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон. Следовательно,  периметр нашей трапеции равен AB+CD+ BC+AD = 4*10 =40 дм.

2. Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его сторонам. Тогда в прямоугольном треугольнике ОВР косинус угла ОВР равен отношению прилежащего катета ВР к гипотенузе ОВ.

ВР = 16√5/2 = 8√5см. ОВ = 20 см.

Cos(<OBC) = 8√5/20 = 2√5/5.

В прямоугольном треугольнике ВНС катет

ВН = ВС*Cos(<OBC) = 16√5*(2√5/5) = 32cм.

Площадь этого треугольника равна Shbc = (1/2)*BH*BC*Sin(<OBC).

Sin(<OBC) = √(1 - Cos(<OBC))  =  √(1-20/25) = 1/√5.  Тогда

Shbc = (1/2)*32*16√5*(1/√5) = 256 см². Это половина площади треугольника АВС (так как ВН - высота и медиана). Значит

Sabc = 2*256 = 512 см².


1. в равнобедренную трапецию авсд (ав=сд) вписана окружность с центром в точке о .найдите периметр т
0,0(0 оценок)
Ответ:
maхimus
maхimus
15.05.2020 19:08
А) ∆AOD = ∆COB, AD=BC. ∆AOC = ∆DOB, AC=BD.
Это на плоскости. А так как у треугольников АСВ и ADB высоты (высота цилиндра) одинаковы. то это равенство верно и для цилиндра.
 
б) Применим координатный метод. Проведем образующие цилиндра АА1, ВВ1, СС1 и DD1. Получили прямоугольную призму АD1BC1A1DB1C.
В ней углы при вершинах попарно перпендикулярны, то есть =90°.
Тогда по Пифагору A1A²+А1D²=AD², A1A²+A1C²=CD², A1C²+A1D²=CD² или A1A²+А1D²=64 (1), A1A²+A1C²=36 (2), A1C²+A1D²=36 (3).
Из (1) и (2) получаем: A1D²-A1C²=28 (4), а
из (3) и (4) получаем: A1D²=32. Тогда A1A²=32, а A1C²=4.
Итак, мы получили измерения нашей призмы и, следовательно, координаты ее вершин:
А(2;0;0), В(0;4√2;0), С(0;0;4√2) и D(2;4√2;4√2).
Имея координаты вершин пирамиды АВСD, мы можем найти и высоту этой пирамиды - расстояние от вершины D до плоскости АВС, и ее объем (найдя по Герону площадь треугольника AВС: Sacb=√(10*4*4*2)=8√5).
Найдем высоту пирамиды. Уравнение ее основания (плоскости АВС) найдем через определитель по формуле:

|Х-Хa Xb-Xa Xc-Xa|       
|Y-Ya Yb-Ya Yc-Ya| = 0. 
|Z-Za Zb-Za Zc-Za|
Подставим данные нам значения координат точек А, B и С:
|X-2    0-2     0-2|   
|Y-0  4√2-0     0-0| =0
|Z-0    0-0   4√2-0|   
Решаем определитель по первому столбцу:
(X-2)(32)+8√2*Y8+√2*Z=0 => 32*X+8√2*Y+8√2*Z-64=0
То есть коэффициенты уравнения равны: А=32, В=8√2, С=8√2 D=-64.
Теперь найдем расстояние от точки D до плоскости α (ABC)   по формуле:
 L(D;α) = |A*Xd+B*Yd+C*Zd+D|/√(A²+B²+C²). Подставляя известные нам значения имеем:
L(D;α) =128/√(128+1024+128) = 128/16√5 =8/√5.
Тогда объем пирамиды ABCD равен V=(1/3)*8√5*8/√5 =64/3= 21и1/3.
ответ: Vabcd=21и 1/3.

Отрезок ав- диаметр верхнего основания цилиндра,сд-диаметр нижнего,причем отрезки ав и сд не лежат н
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота