В любой правильный многоугольник можно вписать единственную окружность.
Доказательство:
Надо доказать, что существует точка, равноудаленная от сторон многоугольника.
Пусть О - центр окружности, описанной около правильного многоугольника.
Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),
но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.
Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.
В правильном многоугольнике центры вписанной и описанной окружностей совпадают.
Докажем, что эта окружность единственная.
Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.
Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.
А: Площадь основания So = a*h/2, где a - основание треугольника - по условию 4 см, h - высота правильного треугольника h = a*корень(3)/2 = 2*корень(3). Таким образом, искомая площадь основания So = 4*2*корень(3)/2 = 4*корень(3) или примерно 7 см2
Б: Площадь боковой пов. Sб = 3*a*p/2, где a*p/2 - площадь одной боковой треугольной грани, a - основание треугольника (4 см), p - высота треугольника (апофема = 8 см). Искомая площадь Sб = 3*4*8/2 = 48 см2
В: Объем пирамиды V = h*So/3, где h - высота пирамиды (6 см), So - уже найденная площадь ее основания (4*корень(3) см). Искомый объем V = 6*4*корень(3) = 24*корень(3) или примерно 41.5 см3
В любой правильный многоугольник можно вписать единственную окружность.
Доказательство:
Надо доказать, что существует точка, равноудаленная от сторон многоугольника.
Пусть О - центр окружности, описанной около правильного многоугольника.
Тогда ОА₁ = ОА₂ = ОА₃ = ... как радиусы описанной окружности, значит треугольники ОА₁А₂, ОА₂А₃ и т.д. равны по трем сторонам (отрезки А₁А₂, А₂А₃ и т.д. равны, как стороны правильного многоугольника),
но тогда равны и высоты этих треугольников, проведенные к сторонам А₁А₂, А₂А₃ и т.д.
Значит, точка О равноудалена от сторон многоугольника, и окружность с центром в точке О и радиусом, равным ОК₁, пройдет через точки К₁, К₂, и т.д., то есть будет касаться сторон многоугольника и значит будет вписанной.
В правильном многоугольнике центры вписанной и описанной окружностей совпадают.
Докажем, что эта окружность единственная.
Предположим, что существует еще одна окружность с центром в некоторой точке О₁, вписанная в тот же правильный многоугольник.
Тогда точка О₁ равноудалена от сторон этого многоугольника, значит лежит в точке пересечения биссектрис его углов, значит совпадает с точкой О - точкой пересечения его биссектрис. Радиус этой окружности равен расстоянию от точки О до сторон, т.е. равен ОК₁, значит эти окружности совпадают.
Б: Площадь боковой пов. Sб = 3*a*p/2, где a*p/2 - площадь одной боковой треугольной грани, a - основание треугольника (4 см), p - высота треугольника (апофема = 8 см). Искомая площадь Sб = 3*4*8/2 = 48 см2
В: Объем пирамиды V = h*So/3, где h - высота пирамиды (6 см), So - уже найденная площадь ее основания (4*корень(3) см). Искомый объем V = 6*4*корень(3) = 24*корень(3) или примерно 41.5 см3