15. точка Аимеет координаты (3; -2). найдите координаты точки А', полученой параллельным переносом точки А на вектор а→(-2; 1) 16. найдите координаты вектора а→, параллельный перенос на который переводит точку А(3; 4) в точку А'(-2; 1)
20. напишите управление прямой, полученной из прямой, заданий уравнением , при параллельным переносом на вектор: а) а→(2; -3); б) а→(2; -2)
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
6. а) 60°, б) 120°, в) 120° и г) 90°.
7. а) 1/2, б) -1/2, в) -1/2, г) 0.
Объяснение:
Определение: "Вектор - это направленный отрезок, то есть отрезок, имеющий длину и определенное направление". Вектор может перемещаться ПАРАЛЛЕЛЬНО СЕБЕ в любое место в пространстве.
Определение: "Два вектора a и b образуют УГОЛ.
Угол между векторами может принимать значения от 0° до 180° включительно.
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором".
Для решения задачи по определению угла между векторами их надо объединить НАЧАЛАМИ.
В правильном шестиугольнике внутренние углы равны 120°.
Прямые, соединяющие центр с вершинами, делят эти углы пополам.
Диагонали, проходящие через центр, делят правильный шестиугольник на 6 правильных треугольников и 6 ромбов.
Исходя из этого:
∠ОАВ = 60°, ∠FАВ = 120°, ∠DEF = 120°, ∠OHC = 90°.
Тогда, соединив НАЧАЛА данных нам векторов, получим ответ:
а) 60°, б) 120°, в) 120° и г) 90°.
7. Формула скалярного произведения векторов:
a·b=|a|·|b|·сosα, где а и b - вектора, α - угол между ними.
Тогда, принимая во внимание, что модули векторов АВ, ВС, CD и EF равны 1 и учитывая, что Cos60=1/2, Cos120= -1/2, Cos90=0 (найденные углы в п.6, имеем):
а) 1/2, б) -1/2, в) -1/2, г) 0.
P.S. Для п. г) модули векторов АС и ВЕ не имеют значения, так как умножение на 0 равно 0, но их легко найти при необходимости:
|AC| = √3 (по Пифагору), а |BE| = 2 (по свойству правильного шестиугольника).
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.