1)высота - перпендикуляр, проведенный из вершины геометрической фигуры. Обозначим её АМ. BC - гипотенуза треугольника ABC. Численно равна 30. Пользуясь теоремой Пифагора запишем формулы для каждого из треугольников.
для большого треугольника ABC: AB^2 + AC^2 = BC^2
для треугольника ABM: AB^2 = AM^2 + BM^2
для треугольника AMC: AC^2 = MC^2 + AM^2
подставляем два последних выражения в первое: AM^2 + BM^2 + MC^2 + AM^2 = BC^2
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
BC - гипотенуза треугольника ABC. Численно равна 30.
Пользуясь теоремой Пифагора запишем формулы для каждого из треугольников.
для большого треугольника ABC:
AB^2 + AC^2 = BC^2
для треугольника ABM:
AB^2 = AM^2 + BM^2
для треугольника AMC:
AC^2 = MC^2 + AM^2
подставляем два последних выражения в первое:
AM^2 + BM^2 + MC^2 + AM^2 = BC^2
преобразования:
2AM^2 + (24)^2 + (6)^2 = (30)^2
2AM^2 + 576 +36 = 900
2AM^2 = 288
AM^2 = 144
AM = 12
AB^2 = AM^2 + BM^2
AB^2 = 720
AB = 12*(5)^1/2
это означает 12 умножить на квдратный корень из 5
AC^2 = MC^2 + AM^2
AC^2 = 6*(5)^1/2
это означает 6 умножить на квдратный корень из 5
По св-ву р/б тр. углы при основании равны =а
2а+120=180
2а=60
а=30
по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона
тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c
но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2
1/2c^2*sqrt(3)/2=9c
c=36/sqrt(3)