Из т.А и т.В как из центров провести полуокружности произвольного, но равного радиуса несколько больше половины АВ так, чтобы они пересеклись по обе стороны от АВ (т.К и т. Н).
Точки пересечения К и Н этих полуокружностей соединить.
Соединить А и Н, В и Н. Четырехугольник АКВН - ромб ( стороны равны взятому радиусу). Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам. =>
1. Углы при основании равнобедренного треугольника равны
Дано: ∆ ABC,
AC=BC
Доказать: ∠A=∠B.
Доказательство:
Проведем в треугольнике ABC биссектрису CF.
Рассмотрим ∆ ACF и ∆ BCF.
1) AC=BC (по условию)
2) CF — общая сторона
3) ∠ACF=∠BCF (так как CF — биссектриса).
Следовательно, ∆ ACF=∆ BCF (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих углов: ∠A=∠B.
2. Сумма углов треугольника равна 180°
Пусть ABC — произвольный треугольник.
Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC.
Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.
Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°.
Объяснение:
1.
Углы АВО и ВАО равны между собой и равны 40. Тогда угол О равен 180-40-40= 100.
Тогда угол С равен 80.
2.
Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам.
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см.
3. ФОТО №2
1). На произвольной прямой отложить отрезок, равный стороне АВ. Обозначить на концах отрезка вершины треугольника: точки А и В.
2) Из точки А как из центра раствором циркуля радиусом, равным длине стороны АС, начертить дугу.
3) Из т.В как из центра раствором циркуля радиусом, равным длине стороны ВС, начертить дугу до пересечения с первой дугой.
Точка пересечения дуг – вершина С искомого треугольника. Соединив А и С, В и С, получим треугольник со сторонами заданной длины.
б) Построение срединного перпендикулярна стандартное.
Из т.А и т.В как из центров провести полуокружности произвольного, но равного радиуса несколько больше половины АВ так, чтобы они пересеклись по обе стороны от АВ (т.К и т. Н).
Точки пересечения К и Н этих полуокружностей соединить.
Соединить А и Н, В и Н. Четырехугольник АКВН - ромб ( стороны равны взятому радиусу). Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам. =>
АМ=МВ и КМ перпендикулярно АВ.
КМ - срединный перпендикуляр к стороне АМ.
1. Углы при основании равнобедренного треугольника равны
Дано: ∆ ABC,
AC=BC
Доказать: ∠A=∠B.
Доказательство:
Проведем в треугольнике ABC биссектрису CF.
Рассмотрим ∆ ACF и ∆ BCF.
1) AC=BC (по условию)
2) CF — общая сторона
3) ∠ACF=∠BCF (так как CF — биссектриса).
Следовательно, ∆ ACF=∆ BCF (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих углов: ∠A=∠B.
2. Сумма углов треугольника равна 180°
Пусть ABC — произвольный треугольник.
Проведём через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны от прямой BC.
Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.
Сумма всех трёх углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°.