Диагональ призмы D= 8см , высота призмы Н=2см и диагональ ромба d составляют пиямоугольный треугольник,поэтому по теореме Пифагора определяем диагональ ромба: d²=8²-2² d=√64-4=√60 Диагональ призмы 5см,высота2см и другая диагональ ромба составляют прямоугольный треугольник; находим вторую диагональ д=√25-4=√21 Диагонали в ромбе взаимоперпендикулярны и делят друг друга пополам,поэтому основание разделено на четыре перпендикулярных треугольника,поэтому сторону ромба находим по теореме Пифагора;(стороны тругольника равны соответственно диагоналям ромба деленных пополам)
Боковая грань усечённой пирамиды - равнобокая трапеция с основаниями 2 и 4 см и острым углом при большем основании, равным 60 градусов.
Боковое ребро L пирамиды равно: L = ((4 - 2)/2)/cos 60° = 1/(1/2) = 2 см.
Наклонная высота h боковой грани равна:
h = √(L² -((4-2)/2)²) = √(4 - 1) = √3 см.
Теперь проведём вертикальное сечение пирамиды через наклонные высоты противоположных боковых граней.
В сечении получим равнобокую трапецию с основаниями 2 и 4 см, боковые стороны которой равны √3 см.
Высота Н такой трапеции равна высоте пирамиды
Н = √((√3)² - ((4-2)/2)²) = √(3 - 1) = √2 см.
ответ: высота пирамиды равна √2 см.
d²=8²-2² d=√64-4=√60
Диагональ призмы 5см,высота2см и другая диагональ ромба составляют прямоугольный треугольник; находим вторую диагональ
д=√25-4=√21
Диагонали в ромбе взаимоперпендикулярны и делят друг друга пополам,поэтому основание разделено на четыре перпендикулярных
треугольника,поэтому сторону ромба находим по теореме Пифагора;(стороны тругольника равны соответственно диагоналям ромба деленных пополам)
а=√21/4+60/4=√81/4=9/2=4.5см