Если на ребрах тетраэдра abcd отмечены точки v (на ребре ab), r (на ребре bd) и t (на ребре cd), а по условию нужно построить сечение тетраэдра плоскостью vrt, то постройте, прежде всего, прямую, по которой плоскость vrt будет пересекаться с плоскостью abc. в данном случае точка v будет общей для плоскостей vrt и abc. 2для того чтобы построить еще одну общую точку, продлите отрезки rt и bc до их пересечения в точке k (данная точка и будет второй общей точкой для плоскостей vrt и abc). из этого следует, что плоскости vrt и abc пересекаться будут по прямой vк. 3в свою очередь прямая vк пересечет ребро ас в точке l. таким образом, четырехугольник vrtl и является искомым сечением тетраэдра, построить которое нужно было по условию . 4обратите внимание на то, что, если прямые rt и bc параллельны, то прямая rt параллельна грани авс, поэтому плоскость vrt пересекает данную грань по прямой vк', которая параллельна прямой rt. а точка l будет точкой пересечения отрезка ас с прямой vк'. сечениететраэдра будет все тем же четырехугольником vrtl. 5допустим, известны следующие исходные данные: точка q находится на боковой грани adb тетраэдра abcd. требуется построить сечение этого тетраэдра, которое бы проходило через точку q и было бы параллельным основанию abc. 6ввиду того, что секущая плоскость параллельна основанию abc, она также будет параллельна прямым ав, вс и ас. а значит, секущая плоскость пересекает боковые грани тетраэдра abcd по прямым, которые параллельны сторонам треугольника-основания авс. 7проведите из точки q прямую параллельно отрезку ав и обозначьте точки пересечения данной прямой с ребрами ad и bd буквами m и n. 8затем через точку m проведите прямую, которая бы проходила параллельно отрезку ас, и обозначьте точку пересечения данной прямой с ребром cd буквой s. треугольник mns и есть искомым сечением.
А). Рассмотрим треугольники АМР и СКР. Они равны по второму признаку равенства: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника: - АМ=СК по условию; - углы А и С равны как углы при основании равнобедренного треугольника АВС; - углы АМР и СКР равны по условию. У равных треугольников АМР и СКР равны соответственные стороны МР и КР.
б). Рассмотрим треугольник МРК. Он равнобедренный (МР=КР как было доказано выше). В равнобедренном треугольнике углы при основании равны. Т.е. <KMP=<MKP.
- АМ=СК по условию;
- углы А и С равны как углы при основании равнобедренного треугольника АВС;
- углы АМР и СКР равны по условию.
У равных треугольников АМР и СКР равны соответственные стороны МР и КР.
б). Рассмотрим треугольник МРК. Он равнобедренный (МР=КР как было доказано выше). В равнобедренном треугольнике углы при основании равны. Т.е. <KMP=<MKP.