167. Стороны прямоугольника равны 2 см и 3 см. Постройте по- добный ему прямоугольник с коэффициентом подобия, равным 2, и найдите отношение площадей построенного и данного прямо- угольников.
Радиусом описанной окружности в данном случае будет половина гипотенузы прямоугольного треугольника. Так как вписанный в окружность прямой угол опирается на диаметр этой окружности. Ищем гипотенузу по известной теореме ПифагораAB=16R=AB/2R=8 №4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD. Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны) Отсюда AP/AM1 = AC1/AB; 8/6 = x/9; x = 12;
№4Точка С1 симметрична точке С относительно D. Точка М1 (само собой) симметрична точке М относительно AD.
Угол АС1D равен вписанному углу MM1A, опирающемуся на дугу АМ, а дуга АМ равна дуге АМ1. Поэтому угол М1РА равен углу АС1D (или просто углу С треугольника АВC), и треугольники АМ1Р и АС1В подобны (у них все углы равны)
Отсюда AP/AM1 = AC1/AB;
8/6 = x/9;
x = 12;
Обозначим первый угол треугольника через х.
Второй угол треугольника в три раза больше первого. Значит величина второго угла 3х.
Он же должен быть на пять градусов меньше третьего. Значит Третий угол на пять градусов больше второго. Величина третьего угла: 3х+5°.
Сумма трех углов в треугольнике 180°.
Составляем уравнение:
х+3х+3х+5°=180°
7х=180°-5°
7х=175°
х=175°:7
х=25°
Первый угол в треугольнике 25°.
Второй угол в треугольнике: 3х=3*25°=75°.
Третий угол в треугольнике: 3х+5°=75°+5°=80°.
ответ: 25°, 75°, 80°.