17" 2. Найдите соѕ a. tg a, ctg а, если sm a-
3. Основание лестницы, приставленной к окну расположенному на высоте 12 м, находится на
расстоянии 5 м от стены. Найдите:
а) длину лестницы
В) косинус угла наклона лестницы к земле
с) синус угла между лестницей и стено дома
Объяснение:
Из точки Е проведем отрезок ЕК, параллельный АВ.
Противоположные стороны параллелограмма параллельны, тоесть СВ//DE => ЕА//КВ и DE//CK
Так как в четырехугольнике КЕАВ стороны попарно параллельны, следовательно КЕАВ – параллелограмм.
ВЕ – биссектриса угла КВА по условию и диагональ параллелограмма КЕАВ.
Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм – ромб.
Следовательно: КЕАВ – ромб
У ромба все стороны равны. Исходя из этого: ЕА=КВ=АВ=8 см.
СD=AB=8 так как противоположные стороны параллелограмма равны.
Р(АВСD)=АВ+ВС+CD+AD=AB+BK+KC+CD+DE+EA=8+8+KC+8+DE+8=32+KC+DE
Так как Р(ABCD)=46 см по условию, то получим уравнение:
32+КС+DE=46
KC+DE=14 см
Так как ЕК//АВ, а АВ//CD, то ЕК//CD;
DE//CK (доказано ранее);
Исходя из этого: CDEK – параллелограмм.
Противоположные стороны параллелограмма равны, тоесть DE=CK.
Тогда 2DE=14 см
DE=7 см
ответ: 7 см
1) с=√(а²+b²) = √(16+9) =5см.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.
2) b=√(с²-а²) =√(169-144) =5см.
Sinα = a/c = 12/13 ≈ 0,923. α ≈ 67°.
Sinβ = b/c = 5/13 ≈ 0,385. β ≈ 23°.
3) α=30°, значит а=0,5·с = 20см (катет a против угла 30°).
b = √(c²-a²) = √(40²-20²) = 20√3.
β = 60°. (по сумме острых углов прямоугольного треугольника).
4) α=45°, значит β = 45°. а=b= 4см, с= √(а²+b²) = √32 = 4√2см.
5) α=60°, значит β = 30°. (по сумме острых углов прямоугольного треугольника).
с=2·b = 10см (катет b против угла 30°).
а = √(с²-b²)= √75 = 5√3см.
6) а=√(с²-b²)=√(100-36) = √64 = 8дм.
Sinα = a/c = 0,8. α ≈ 53°.
Sinβ = b/c = 0,6. β ≈ 37°.