174. Дано: ДАВС и ДA,B,C, ZA = ZA, 2C = 2C, AB = 5 BC = 7 см, A, B = 10 см, A,C, = 8 см (рисунок 120). Найдите остальные стороны треугольников. С, C ор
Уравнение прямой в общем виде записывается как y = kx + b. Так как прямая должна быть параллельна оси абсцисс, то k = 0. Уравнение прямой вырождается в y = b, где b - это константа.
Так как прямая должна касаться окружности, следовательно, прямая касается окружности в точках, равноудалённых от центра окружности на расстояние, равное радиусу окружности (это хорошо может быть видно, если нарисовать рисунок). Из уравнения окружности видно, что её центр находится в точке (-5; 4), радиус равен 3.
1) 5+10 = 15 см - длина АВ
2) 15²-12²=ВС². (По теореме Пифагора) 225-144=81, ВС =√81=9 см (ВС=9 см)
3) Площ. АВС находим так (АС*ВС)÷2 , т.е. (12*9)÷2=54 см²
Теперь надо найти площ. треугольника МВК и вычесть ее из площ. АВС.
4) Т.к. углы АСВ и МКВ - прямые, а АВ=10 см, что составляет 2/3 от АВ, то ВК равно 2/3 от ВС, т.е. 6 см. ВК=6 см.
5) По теор. Пифагора МВ²-ВК²=МК², т.е 100-36=64, МК-√64=8 см
6) Площ. МВК находим так (МК*ВК)÷2 , т.е. (8*6)÷2= 24 см²
7) Площ. четырехугол. АМКС = 54-24=30 (30 см²)
Уравнение прямой в общем виде записывается как y = kx + b. Так как прямая должна быть параллельна оси абсцисс, то k = 0. Уравнение прямой вырождается в y = b, где b - это константа.
Так как прямая должна касаться окружности, следовательно, прямая касается окружности в точках, равноудалённых от центра окружности на расстояние, равное радиусу окружности (это хорошо может быть видно, если нарисовать рисунок). Из уравнения окружности видно, что её центр находится в точке (-5; 4), радиус равен 3.
Итак, ответ:
прямая 1: y = 7
прямая 2: y = 1