2. При пересечении двух прямых, образуются смежные, а также вертикальные углы. Смежные углы это те, которые на одной прямой, а прямая у нас 180°. Поэтому, мы от 180° отнимаем известный нам угол (58°), находим смежный ему угол (122°). Остальные углы они являются вертикальными по отношению к этим. Поэтому, тот угол, который напротив угла в 58° равен 58°. А тот который напротив 122°,равен 122°.
3. K-середина отрезка CD, то следует что CK и KD равны, а значит 8:2=4см--CK, KD. CM=MK то 4:2=2см--CM,MK. ответ: CM=2cm; MK=2cm; KD=8cm.
1. Отрезок FK пересекает прямую РМ
2. При пересечении двух прямых, образуются смежные, а также вертикальные углы. Смежные углы это те, которые на одной прямой, а прямая у нас 180°. Поэтому, мы от 180° отнимаем известный нам угол (58°), находим смежный ему угол (122°). Остальные углы они являются вертикальными по отношению к этим. Поэтому, тот угол, который напротив угла в 58° равен 58°. А тот который напротив 122°,равен 122°.
3. K-середина отрезка CD, то следует что CK и KD равны, а значит 8:2=4см--CK, KD. CM=MK то 4:2=2см--CM,MK. ответ: CM=2cm; MK=2cm; KD=8cm.
Объяснение:
AE - биссектриса A => BAE=EAD=a - обозначим
углы BKA=EKD как вертикальные
AKD+DKE = 180 как смежные
по т.синусов из треуг.BAK можно записать:
BK:sina = AB:sin(BKA)
по т.синусов из треуг.KAD можно записать:
KD:sina = AD:sinAKD = AD:sin(180-EKD) = AD:sin(EKD) = AD:sin(BKA)
т.к. sin(180-a) = sina в треугольнике
отсюда sin(BKA) = AD * sina / KD
BK:sina = AB:sin(BKA) => BK:sina = AB: (AD * sina / KD) = AB * KD / (AD * sina) =>
BK = AB * KD / AD
BK / KD = AB / AD = AB / BC (т.к. параллелограмм) = 4/9