Так как треугольник равнобедренный, то две его боковые стороны равны(обозначим их длины как x). Основание(третья сторона) будем записывать как y. Периметр - это сумма длин всех сторон, значит, x+x+y=38. Далее возможны два варианта решения: если основание больше боковой стороны, и наоборот, если основание - меньшая из сторон.
Вариант 1: основание больше боковой стороны. y-x=8, y = x+8 ⇒ x+x+(x+8)=38, x = 10. Боковая сторона = 10 см, а основание = 10+8 = 18 см.
Вариант 2: основание меньше боковой стороны x-y=8, x=y+8 ⇒ y+(y+8)+(y+8) = 38, y≈7,3 ( или же записать дробью семь целых одна третья). Основание - 7,3 см, а боковые стороны - 7,3+8 - по 15,3 см(пятнадцать целых одна третья).
1) Площадь поверхности складывается из площади боковых сторон и двух площадей оснований S = 2(a+b)*c + 2ab = 2(1+2)*3+2ab = 18+4 = 22
2) Апофема пирамиды - это высота боковой грани. Проведем вертикальную плоскость через вершину пирамиды параллельно стороне основания. В сечении получим равнобедренный треугольник с высотой b и основанием а. Боковые стороны треугольника - апофемы с. По теореме Пифагора: с=√[b²+(a/2)²]
3)Проведем вертикальную плоскость через высоту пирамиды и боковое ребро.
В сечении получим прямоугольный тр-к у которого один из катетов OE=10 - высота пирамиды, другой лежит в плоскости основания AE, а гипотенуза OA=10√2 - ребро.
У угла при основании ОАЕ - sin(OAE)=OE/OA=10/10√2 = √2/2.
ответ - угол при основании OAE=45 градусов
4)Полная поверхность пирамиды равна сумме площадей боковых сторон + площадь основания: S = 3(4*3)/2 + 2(√3*a²/4) = 18 + 8√3 ≈ 31,9
Периметр - это сумма длин всех сторон, значит, x+x+y=38.
Далее возможны два варианта решения: если основание больше боковой стороны, и наоборот, если основание - меньшая из сторон.
Вариант 1: основание больше боковой стороны.
y-x=8,
y = x+8 ⇒ x+x+(x+8)=38, x = 10. Боковая сторона = 10 см, а основание = 10+8 = 18 см.
Вариант 2: основание меньше боковой стороны
x-y=8,
x=y+8 ⇒ y+(y+8)+(y+8) = 38, y≈7,3 ( или же записать дробью семь целых одна третья).
Основание - 7,3 см, а боковые стороны - 7,3+8 - по 15,3 см(пятнадцать целых одна третья).
1) Площадь поверхности складывается из площади боковых сторон и двух площадей оснований S = 2(a+b)*c + 2ab = 2(1+2)*3+2ab = 18+4 = 22
2) Апофема пирамиды - это высота боковой грани. Проведем вертикальную плоскость через вершину пирамиды параллельно стороне основания. В сечении получим равнобедренный треугольник с высотой b и основанием а. Боковые стороны треугольника - апофемы с. По теореме Пифагора: с=√[b²+(a/2)²]
3)Проведем вертикальную плоскость через высоту пирамиды и боковое ребро.
В сечении получим прямоугольный тр-к у которого один из катетов OE=10 - высота пирамиды, другой лежит в плоскости основания AE, а гипотенуза OA=10√2 - ребро.
У угла при основании ОАЕ - sin(OAE)=OE/OA=10/10√2 = √2/2.
ответ - угол при основании OAE=45 градусов
4)Полная поверхность пирамиды равна сумме площадей боковых сторон + площадь основания: S = 3(4*3)/2 + 2(√3*a²/4) = 18 + 8√3 ≈ 31,9