189. Прачытайце тэкст. Чаму ён так называецца? Вызначце стыль тэксту.
Выпаў снег
Аднойчы раніцай я прахапіўся і аж прысеў на ложку.
Гадзіннік мерна чэкаў, але паказваў яшчэ не позні час.
Ад чаго ж гэта пабялелі столь, печ і сцены? Я прынік да
шыбы і ўсё зразумеў. Выпаў снег!
На двары ўсё стаяла аснежаным і змрочныя будынкі, і
са.. і платы. У хату ад іх лілося хлоднае, але мяккае святло.
3..мля стр.2xi агаро.. усё накрылася белым покрывам. Лё..
кія пушынкі ляталі, кружыліся ў паветры і ас далі на др..вы
на голы куст бэзу пад акном.
Я не стаў чакаць, а хуценка сабраўся і пабег (Паводле
І. Грамовіча).
Спішыце два апошнія абзацы тэксту, устаўляючы прапушчаныя літа
ры і ставячы знакі прыпынку. Падкрэсліце аднародныя члены сказа
Вызначце сродкі іх сувязі.
1. OP/PK=MN/NK -теорема Фалеса
NK=PK*MN/OP=8*15/20=6см
2. Так как треугольники подобны, то АВ/А1В1=ВС/В1С1=АС/А1С1
Найдем коэффициент подобия ВС/В1С1=к
к=27/36
к=3/4
Теперь найдем неизвестные стороны
АВ/А1В1=3/4
АВ/28=3/4
4АВ=84
АВ=21см
АС/А1С1=3/4
9/А1С1=3/4
3А1С1=36
А1С1=12см
3. Биссектриса делит угол В пополам. Стороны АМ и МС - пропорционально прилежащие, следовательно треугольники подобны, ну а дальше составляешь пропорцию
АМ/МС = АВ/ВС
12/14 = 30/х
12х = 30*14 = 420
х=35
Ответ: 35
4. Дано:
Δ АВС; АД:ДВ=5:3; ДЕ║АС; АС=16 см.
Найти ДЕ.
Решение:
Δ АВС подобен Δ ДВЕ по 1 признаку подобия.
Следовательно, АВ\ДВ=АС\ДЕ
(5+3)\3=16\ДЕ
ДЕ=16*3:8=6 см
Ответ: 6 см.
5.BD = ВО + OD = 1,5 + 3,5 = 5 см
2 вариант.
1. ЕД=55-АЕ=55-40=15 см.
2. Раз треугольники подобны, то отношения их сходственные сторон равны.
Найдём отношение уже известных сторон:
BC/B1C1 = 22/33 = 2/3
Тогда AB/A1B1 = 2/3
AB/15 = 2/3 => AB = 15/3•2 = 10 см.
AC/A1C1 = 2/3
14/A1C1 = 2/3 => A1C1 = 14/2•3 = 21 см.
Ответ: A1C1 = 21 см; AB = 10 см.
3. Биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам.
Тогда получаем следующее соотношение: EB/AB=EC/AC
Отсюда EB=EC*AB/AC=6*32/15=12 cm.
4. Дано:
Δ АВС; АЕ:ЕС=2:7; FЕ║АС; EF=21 см.
Найти AB.
Решение:
Δ АВС подобен Δ FCЕ по 1 признаку подобия.
Следовательно, АВ\EF=АС\CЕ
AB\21=(2+7)\7
AB=21*9:7=27 см
Ответ: 27 см.
5. ΔAOD∞ΔCOB^<BCA=<DAC и <CBD=<ADB-накрест лежащие
AD:BC=AO:OC
AD:(42-AD)=10:4
4AD=420-10AD
4AD+10AD=420
14AD=420
AD=420:14
AD=30
BC=42-AD=42-30=12
Ответ AD=30см,ВС=12см
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2