Порассуждаем. Здесь нужно вспомнить теорему о неравенстве треугольника, хотя и без нее можно догадаться, что если треугольник равнобедренный, значит, две его стороны равны между собой. Тогда, выбирая из 5 или 10, понимаем, что если основание равно 10, а две стороны по 5, то они сойдутся на середине основания, и никакого треугольника не получится, или получится то, что называется "Вырожденный" треугольник, у которого все три вершины лежат на одной прямой. В привычном нам треугольнике сумма длин двух его сторон больше длины третьей стороны.⇒ В данном треугольнике основанием будет сторона, равная 5 см, боковые стороны равны по 10 см. 10+10>5 – неравенство сторон треугольника соблюдено.
найти: Sполн.пов
решение.
Sполн.пов=Sбок+Sосн
Sбок=Росн*ha, ha-апофема
Sосн=а²
АВСД - квадрат. найдем диагональ АС по теореме Пифагора:
АС²=АВ²+ВС². АС=2√2
рассмотрим ΔМАО:
(О- точка пересечения диагоналей квадрата-основания пирамиды)
<MAO=45°,
AO=2√2/2, AO=√2. ΔMAO - прямоугольный равнобедренный, ⇒МО=√2
МК-апофема.
рассмотрим ΔМОК: <MOK=90°(MO-высота пирамиды)
ОК=2:2, ОК=1
найдем МК по тереме Пифагора:
МК²=МО²+ОК², МК=√3
Sполн.пов=(4*2*√3)+2²=8√3+4
Sполн.пов=8√3+4
Здесь нужно вспомнить теорему о неравенстве треугольника, хотя и без нее можно догадаться, что если треугольник равнобедренный, значит, две его стороны равны между собой.
Тогда, выбирая из 5 или 10, понимаем, что если основание равно 10, а две стороны по 5, то они сойдутся на середине основания, и никакого треугольника не получится, или получится то, что называется "Вырожденный" треугольник, у которого все три вершины лежат на одной прямой.
В привычном нам треугольнике сумма длин двух его сторон больше длины третьей стороны.⇒
В данном треугольнике основанием будет сторона, равная 5 см, боковые стороны равны по 10 см.
10+10>5 – неравенство сторон треугольника соблюдено.