(-2; 1) и ее центр находится в точке (2; -3).
4.1. Перечертите следующую таблицу в тетрадь и, используя форму-
лу для вычисления координат точки С - середины отрезка АВ, заполните
пустые клетки таблицы:
А | (2; -3)
(0; 1) | (0; 0) (с; d) | (3; 5) | (3t+5; 7)
в (-3; 1) (4; 7)
(-3; 7)
(3; 8) (t+7; -7) |
(-3; -2) (3; -5)
(а; b)
4.12. В параллелограмме ABCD даны две соседние вершины A(-4; 4),
В (2; 8) и точка пересечения его диагоналей E(2; 2). Найдите координаты
1.найдите площадь полной поверхности цилиндра
РЕШЕНИЕ
альфа (a)
высота цилиндра Н=R*tg(a)
длина окружности основания L=2pi*R
площадь боковой поверхности Sбок=H*L=R*tg(a)*2pi*R=2pi*R^2*tg(a)
площадь основания Sосн=pi*R^2
площадь полной поверхности S=2Sосн+Sбок=2pi*R^2 +2pi*R^2*tg(a)=2pi*R^2(1+tg(a))
ответ 2pi*R^2(1+tg(a))
2.найдите площадь сечения призмы
РЕШЕНИЕ
площадь боковой поверхности Sбок=240 см
боковое ребро прямой призмы (высота) H= 10 см
периметр основания Р=Sбок/H=240/10=24 см
в основании РОМБ, сторона ромба b=P/4= 6 см
ромб с острым углом 60 градусов.-значит он состоит из двух равностороннних треугольников-, у которых одна сторона-это меньшая диагональ d=b= 6 см
меньшие дигонали и боковые ребра являются сторонами искомого сечения
площадь сечения ,проходящего через боковое ребро и меньшую диагональ основания. S=d*H=6*10=60 см2
ответ 60 см2
1.найдите площадь полной поверхности цилиндра
РЕШЕНИЕ
альфа (a)
высота цилиндра Н=R*tg(a)
длина окружности основания L=2pi*R
площадь боковой поверхности Sбок=H*L=R*tg(a)*2pi*R=2pi*R^2*tg(a)
площадь основания Sосн=pi*R^2
площадь полной поверхности S=2Sосн+Sбок=2pi*R^2 +2pi*R^2*tg(a)=2pi*R^2(1+tg(a))
ответ 2pi*R^2(1+tg(a))
2.найдите площадь сечения призмы
РЕШЕНИЕ
площадь боковой поверхности Sбок=240 см
боковое ребро прямой призмы (высота) H= 10 см
периметр основания Р=Sбок/H=240/10=24 см
в основании РОМБ, сторона ромба b=P/4= 6 см
ромб с острым углом 60 градусов.-значит он состоит из двух равностороннних треугольников-, у которых одна сторона-это меньшая диагональ d=b= 6 см
меньшие дигонали и боковые ребра являются сторонами искомого сечения
площадь сечения ,проходящего через боковое ребро и меньшую диагональ основания. S=d*H=6*10=60 см2
ответ 60 см2