2.5. Торкөз қағазға 2.7-суретте көрсетілгендей етіп CE сәулесі мен АВ кесіндісін салыңдар. СЕ сәулесінің С төбесінен АВ кесіндісіне тең СD кесіндісін салыңдар. 2.7-сурет
В равнобедренном треугольнике действительно равны углы при основании. Это утверждение верно.
ответ: утверждение 1 верно.
Медианы треугольника пересекаются в одной точке - в центроиде (в центре тяжести треугольника). Она является одной из замечательных точек треугольника. Это утверждение верно.
ответ: утверждение 2 верно.
Медиана произвольного равнобедренного треугольника, проведённая к ОСНОВАНИЮ, а не к боковой стороне, является его биссектрисой и высотой. Это утверждение неверно.
ответ: утверждение 3 неверно.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны. Это один из признаков равенства треугольников. Это утверждение верно.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
Объяснение:
Проанализируем каждое утверждение.
В равнобедренном треугольнике действительно равны углы при основании. Это утверждение верно.
ответ: утверждение 1 верно.
Медианы треугольника пересекаются в одной точке - в центроиде (в центре тяжести треугольника). Она является одной из замечательных точек треугольника. Это утверждение верно.
ответ: утверждение 2 верно.
Медиана произвольного равнобедренного треугольника, проведённая к ОСНОВАНИЮ, а не к боковой стороне, является его биссектрисой и высотой. Это утверждение неверно.
ответ: утверждение 3 неверно.
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны. Это один из признаков равенства треугольников. Это утверждение верно.
ответ: утверждение 4 верно.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.