2.56. Упростите выражения: 1) 1 - sin^2 a ; 3) (1 - cos a)(1 + cos a) : 5) sin a-sin a cos^ 2 a; 7) sin 85^ tg 5^ 9) 2 cos 2^ sin 88^ +cos 2^ ; 11) t * g ^ 2 * a * (2cos^2 a + sin^2 a - 1) ; 13) t * y ^ 2 * a - sin^2 a * t * g ^ 2 * a ; 2) 1 - cos^2 alpha ; 4) 1 + gi * n ^ 2 * a + cos^2 a ; 6) cos 45 degrees tg 45 degrees : 8) 1-sin 18 cos 72 degrees ; 10) sin^ 4 a+cos^ 4 a+2sin^ 2 cos^ 7 12) cos^ 2 a+tg^ 2 a cos^ 2 a; 14) (1 - sin a)(1 + sin a) ; 15) tg 59 tg 25^ tg 45^ tg 65 degrees tg 85 degrees .
По теореме косинусов :
AC² =AB² +BC² -2AB*BC *cosB =5² +6² -2*5*6*cosB = 61 - 60*cosB.
Определим cosB.
S = (1/2)*AB*BC*sinB ⇒ sinB =2S/(AB*BC) = 2*12 / 5*6 = 4/5,
следовательно : cosB = ± √ (1-sin²C) =± √ (1-(4/5)/² ) = ± 3/5.
a) ∠B _острый ⇒ cosB = 3/5.
AC² = 61 - 60*cosB = 61 - 60*(3/5) =25 ⇒ AC =5.
* * *AC =AB , ∆ABС - равнобедренный * * *
медиана к стороне AC:
BM=(1/2)√(2(AB² +BC²)-AC²) =(1/2)√(2(5² +6²) -5² )=(1/2)√(2(5² +6²)-5²) =
=√97 / 2 .
или
b) ∠B _тупой , т.е. cosB = - 3/5
AC² = 61 - 60*cosB =61 - 60*( -3/5) = 61 + 60*(3/5) =97 ⇒ AC =√97.
BM=(1/2)√(2(AB² +BC²) -AC²) =(1/2)√(2(5² +6²) -97)=(1/2)*5 =
=2,5.
S=√p(p-a)(p-b)(p-c) , формула Герона , p _полупериметр
p =(a+b+c)/2 =(3+8+7)/2 =9 (см).
S =√9*6*1*2 =6√3 (см²).
2.
∠A +∠C =140°.
---
∠B =∠D - ?
* * * трапеция равнобедренная ⇒ ∠A=∠C и ∠D = ∠B * * *
∠A=∠C =140°/2 =70°.
∠A+∠B =180° ( как сумма односторонних углов) ;
∠B =180° - ∠A=180 °- 70°=110°.
или
(∠A+ ∠C)+(∠B + ∠D) =360 ;
(∠A+ ∠C)+2∠B =360 ;
∠B =(360°-(∠A+ ∠C))/2 =(360°-140°) /2 =110°.
4.
S = AB*CH/2 = 3*3/2 =4,5 (см²).
5.
R =c/2 где с гипотенуза ;
По теореме Пифагора : c=√(6²+8²) =√(36+64) =√100 =10 (см) .
R =c/2 =10 см /2 =5 см.