На каждом участке функция является непрерывной. Нужно выяснить непрерывность сопряжений соседних участков. Для этого нужно вычислить значения в сопрягаемой точке по формулам левого и правого участков. В случае непрерывной функции значения должны совпасть.
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.
Нужно выяснить непрерывность сопряжений соседних участков.
Для этого нужно вычислить значения в сопрягаемой точке по формулам левого и правого участков. В случае непрерывной функции значения должны совпасть.
Сопряжение 1: ; x=0
y(0) = 0
y(0) = x = 0
Сопряжение 2: ; x=1
y(1) = x = 1
y(1) = -x²+4x-2 = -1²+4*1-2 = -1+4-2 = 1
Сопряжение 3: ; x=3
y(3) = -x²+4x-2 = -3²+4*3-2 = -9+12-2 = 1
y(3) = 4-x = 4-3 = 1
Как видно, во всех точках сопряжения левое и правое значение совпадают.
Значит, вся функция является непрерывной.
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.