№ 2. Через вершину B трикутника ABC до площини трикутника проведений перпендикуляр BM завдовжки 4√2 см. Точка E — середина сторони AC. Обчисліть площу трикутника AEM, якщо ∠B = 90°, AB = BC = 8 см надо
Так как треугольник ABC равнобедренный, то у него углы при основании равны ∠А=∠В. Биссектриса делит угол пополам, поэтому α=∠А/2 и β=∠В/2. Но ∠А=∠В и поэтому α=β. Значит, треугольник ADB также равнобедренный.
Найдём углы α и β. Сумма внутренних углов треугольника равна 180°: α + β + 100° = 180°. В силу этого α = β = (180-100)/2 = 40°.
Тогда ∠CАВ=∠СВА=2·α=2·40°=80°. Опять используем свойство:
Пусть в равнобедренном треугольнике АВС с основанием AB: АС=СВ=a, AB=b. <A=<B, SinA=SinB=1/4. Тогда CosB=√(1-1/16)=√15/4. По теореме косинусов из треугольника АВС имеем: a²=a²+b²-2abCosB или 0=b²-2*16√15*b*√15/4 или b²-120b=0. b1=0 - не удовлетворяет условию. b=120. Площадь треугольника АВС равна: (1/2)*a*b*sinA или Sabc=(1/2)*16√15*120*0,25=240√15. С другой стороны Sabc=(1/2)*a*h, где а - сторона ВС, h - высота АН, проведенная к этой стороне. Тогда АН=2Sabc/a или АН=480√15/(16√15)=30. ответ: АН=30.
P.S. Заметим, что треугольник АВС - тупоугольный, так как синус угла при основании равен 0,25 => угол ≈14,5°.
20°
Объяснение:
Дано (см. рисунок):
ΔАВС - равнобедренный
AD - биссектриса угла А
BD - биссектриса угла В
∠ADB = 100°
Найти: ∠С
Решение.
Так как треугольник ABC равнобедренный, то у него углы при основании равны ∠А=∠В. Биссектриса делит угол пополам, поэтому α=∠А/2 и β=∠В/2. Но ∠А=∠В и поэтому α=β. Значит, треугольник ADB также равнобедренный.
Найдём углы α и β. Сумма внутренних углов треугольника равна 180°: α + β + 100° = 180°. В силу этого α = β = (180-100)/2 = 40°.
Тогда ∠CАВ=∠СВА=2·α=2·40°=80°. Опять используем свойство:
Сумма внутренних углов треугольника равна 180°.
В силу этого ∠CАВ+∠СВА+∠С=180°. Отсюда
∠C=180°-(∠CАВ+∠СВА)=180°-(80°+80°)=180°-160°=20°.
ответ: 20°
АС=СВ=a, AB=b. <A=<B, SinA=SinB=1/4.
Тогда CosB=√(1-1/16)=√15/4.
По теореме косинусов из треугольника АВС имеем:
a²=a²+b²-2abCosB или 0=b²-2*16√15*b*√15/4 или
b²-120b=0. b1=0 - не удовлетворяет условию.
b=120.
Площадь треугольника АВС равна: (1/2)*a*b*sinA или
Sabc=(1/2)*16√15*120*0,25=240√15. С другой стороны
Sabc=(1/2)*a*h, где а - сторона ВС, h - высота АН, проведенная к этой стороне. Тогда
АН=2Sabc/a или АН=480√15/(16√15)=30.
ответ: АН=30.
P.S. Заметим, что треугольник АВС - тупоугольный, так как синус угла при основании равен 0,25 => угол ≈14,5°.