Высота основания пирамиды (она же и медиана и биссектриса) равна: ho=a*cos30 = 2*(√3/2) = √3 см. Высоту пирамиды найдём из треугольника, полученного осевым сечением пирамиды через боковое ребро и апофему А. Высота пирамиды H своим основанием делит высоту основания ho в отношении 2:1 считая от вершины. Находим высоту H пирамиды: H = (1/3)ho*tg30° = (√3/3)*(1/√3) = 1/3 см. Апофема А равна √(Н²+((1/3)ho)²) = √((1/9)+3/9) = 2/3 см. Площадь боковой поверхности равна: Sбок = (1/2)А*Р = (1/2)*(2/3)*(2*3) = 2 см². Площадь основания So = a²√3/4 = 2²√3/4 = √3. Площадь полной поверхности пирамиды равна: S =Sбок + So = (2+√3) см².
Пусть будет параллелограмм ABCD, где угол В - тупой. Опустим высоты ВМ на сторону AD и высоту ВК на сторону CD. Пусть ВМ=3, ВК=5. Угол МВК соответственно равен 30 градусов. Угол А равен углу С, потому что это противоположные углы параллелограмма, тогда угол АВМ = угол СВК. Пусть угол С равен х, а угол СВК = у, тогда по теореме о сумме углов треугольника х+у=90, тогда 2х+2у=180. Сумма углов В и С равна 180, потому что АВСD - параллелограмм, значит, Угол В + угол С = 180 = 2у+х+30=2у+2х, откуда следует, что х=30. Тогда треугольники ВСК и АВМ не просто прямоугольные, в них один острый угол равен 30 градусов, поэтому катеты против этих углов равны половине гипотенузы, значит,АВ=2ВМ=6, ВС=2ВК=10
ho=a*cos30 = 2*(√3/2) = √3 см.
Высоту пирамиды найдём из треугольника, полученного осевым сечением пирамиды через боковое ребро и апофему А.
Высота пирамиды H своим основанием делит высоту основания ho в отношении 2:1 считая от вершины.
Находим высоту H пирамиды:
H = (1/3)ho*tg30° = (√3/3)*(1/√3) = 1/3 см.
Апофема А равна √(Н²+((1/3)ho)²) = √((1/9)+3/9) = 2/3 см.
Площадь боковой поверхности равна:
Sбок = (1/2)А*Р = (1/2)*(2/3)*(2*3) = 2 см².
Площадь основания So = a²√3/4 = 2²√3/4 = √3.
Площадь полной поверхности пирамиды равна:
S =Sбок + So = (2+√3) см².
Угол А равен углу С, потому что это противоположные углы параллелограмма, тогда угол АВМ = угол СВК.
Пусть угол С равен х, а угол СВК = у, тогда по теореме о сумме углов треугольника х+у=90, тогда 2х+2у=180. Сумма углов В и С равна 180, потому что АВСD - параллелограмм, значит, Угол В + угол С = 180 = 2у+х+30=2у+2х, откуда следует, что х=30. Тогда треугольники ВСК и АВМ не просто прямоугольные, в них один острый угол равен 30 градусов, поэтому катеты против этих углов равны половине гипотенузы, значит,АВ=2ВМ=6, ВС=2ВК=10
ответ: 6 и 10