3)треугольники равны по 1(общей) стороне и 2 прилежащим углам
4)треугольники равны по 2 сторонам и прилежащим к ним углу
5)треугольники равны по 1(общей) стороне и 2 прилежащим углам
6)Треугольники образуют равнобедренный треугольник ⇒ сторона MS = SO ⇒ ΔQMS = ΔSOT (так как ∠QSM = ∠TSO как вертик. Сторона MS = SO и ∠QMS = ∠SOT) ⇒ MS + ST = OS + SQ ⇒ QO = MT ⇒ ΔMTO = ΔMQO (по 2 сторонам и прилежащим к ним углу)
7)ΔROQ = ΔOPD (по 2 сторонам и прилежащим к ним углу) ⇒ RO = PO и DO = OQ ⇒ RO + OD = PO + OQ ⇒ RD = QP ⇒ ΔEDR = ΔPEQ (по 2 сторонам и прилежащим к ним углу)
8)∠ACB = ∠ECD (как вертик.) ∠BAC = ∠CED(как смежные) ⇒ ΔABC = ΔCED(по 1 стороне и 2 прилежащим углам)
13)CE = CA так как CD + DE = AB + BC ⇒ ΔACE равноб. ⇒ ∠A = ∠E ⇒ ΔABF = ΔKDE (по 1 стороне и 2 прилежащим углам)
14)∠ABF = ABC - 90*
∠DCE = DCB - 90* ⇒ ∠ABF = ∠DCE
так как BC║AD то BF = CE ⇒ ΔABF = ΔDCE(по 1 стороне и 2 прилежащим углам)
3)треугольники равны по 1(общей) стороне и 2 прилежащим углам
4)треугольники равны по 2 сторонам и прилежащим к ним углу
5)треугольники равны по 1(общей) стороне и 2 прилежащим углам
6)Треугольники образуют равнобедренный треугольник ⇒ сторона MS = SO ⇒ ΔQMS = ΔSOT (так как ∠QSM = ∠TSO как вертик. Сторона MS = SO и ∠QMS = ∠SOT) ⇒ MS + ST = OS + SQ ⇒ QO = MT ⇒ ΔMTO = ΔMQO (по 2 сторонам и прилежащим к ним углу)
7)ΔROQ = ΔOPD (по 2 сторонам и прилежащим к ним углу) ⇒ RO = PO и DO = OQ ⇒ RO + OD = PO + OQ ⇒ RD = QP ⇒ ΔEDR = ΔPEQ (по 2 сторонам и прилежащим к ним углу)
8)∠ACB = ∠ECD (как вертик.) ∠BAC = ∠CED(как смежные) ⇒ ΔABC = ΔCED(по 1 стороне и 2 прилежащим углам)
13)CE = CA так как CD + DE = AB + BC ⇒ ΔACE равноб. ⇒ ∠A = ∠E ⇒ ΔABF = ΔKDE (по 1 стороне и 2 прилежащим углам)
14)∠ABF = ABC - 90*
∠DCE = DCB - 90* ⇒ ∠ABF = ∠DCE
так как BC║AD то BF = CE ⇒ ΔABF = ΔDCE(по 1 стороне и 2 прилежащим углам)
сделаем построение по условию
соединим точки А и В
найдем углы треугольника АЕВ
<ABD -вписаный - опирается на дугу (AD)
его величина РАВНА половине размера дуги
<ABD=<ABE=92/2=46
<ВАС -вписаный - опирается на дугу (ВС)
его величина РАВНА половине размера дуги
<ВАС=<BAE=48/2=24
два угла нашли
сумма углов в треугольнике 180 град
<AEB =180 -<ABE -<BAE =180-46-24=110 град
угол <AEC =180 - развернутый
<BEC и <AEB -смежные
<BEC =180-<AEB =180-110=70 град
ОТВЕТ <АЕВ=110 ; <ВЕС=70