Проведем касательную к двум окружностям в точке касания А. Пусть точка пересечения ее с ВС будет К. Итак, ВК и КА - отрезки касательных, проведенных из точки вне окружности к окружности с центром в точке О1 и значит они равны. То же самое с отрезками касательных КА и КС к окружности в точке О2. То есть КА = КС. Значит КА=КВ=КС.
Треугольник, в котором медиана равна половине стороны, к которой она проведена, - прямоугольный.
Треугольник ВАС из угла ВАС которого проведена медиана, равная половине стороны, к которой проведена - прямоугольный! Значит угол ВАС - прямой. Что и требовалось доказать.
Дана трапеция ABCD, у которой известны все стороны. Нужно найти высоту, чтобы вычислить площадь.
Проведем отрезок BE к нижнему основанию AD параллельно боковой стороне трапеции CD. Поскольку BE и CD параллельны и проведены между параллельными основаниями трапеции BC и DA, то BCDE - параллелограмм, и его противоположные стороны BE и CD равны. BE=CD.
Рассмотрите треугольник ABE. AE=AD-ED. Основания трапеции BC и AD известны, а в параллелограмме BCDE противолежащие стороны ED и BC равны. ED=BC, значит, AE=AD-BC.
Теперь найдем площадь треугольника ABE по формуле Герона (вложение 2).
Проведем касательную к двум окружностям в точке касания А. Пусть точка пересечения ее с ВС будет К. Итак, ВК и КА - отрезки касательных, проведенных из точки вне окружности к окружности с центром в точке О1 и значит они равны. То же самое с отрезками касательных КА и КС к окружности в точке О2. То есть КА = КС. Значит КА=КВ=КС.
Треугольник, в котором медиана равна половине стороны, к которой она проведена, - прямоугольный.
Треугольник ВАС из угла ВАС которого проведена медиана, равная половине стороны, к которой проведена - прямоугольный! Значит угол ВАС - прямой. Что и требовалось доказать.
0,13 м = 1,3 дм
0,73 м = 3,7 дм
Дана трапеция ABCD, у которой известны все стороны. Нужно найти высоту, чтобы вычислить площадь.
Проведем отрезок BE к нижнему основанию AD параллельно боковой стороне трапеции CD. Поскольку BE и CD параллельны и проведены между параллельными основаниями трапеции BC и DA, то BCDE - параллелограмм, и его противоположные стороны BE и CD равны. BE=CD.
Рассмотрите треугольник ABE. AE=AD-ED. Основания трапеции BC и AD известны, а в параллелограмме BCDE противолежащие стороны ED и BC равны. ED=BC, значит, AE=AD-BC.
Теперь найдем площадь треугольника ABE по формуле Герона (вложение 2).
p = 4,5
S = 2,4
Найдем высоту
ВО = 2S / AE
BO = 0,6
Высота треугольник является и высотой трапеции.
Sтрап = (2+6)*0,6 / 2 = 2,4 дм.