Найти длины сторон треугольника АВС: АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны стороны равны между собой, тогда АВ = ВС.
Пусть длина стороны АВ равна 2 * х сантиметров, тогда длина стороны АС = 3 * х сантиметров. Нам известно, что периметр АВС равен 28 сантиметров. Составляем уравнение:
8 сантиметров; 8 сантиметров; 12 сантиметров.
Объяснение:
Дано:
АВС — равнобедренный треугольник,
АВ : АС = 2 : 3,
периметр АВС равен 28 сантиметров.
Найти длины сторон треугольника АВС: АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны стороны равны между собой, тогда АВ = ВС.
Пусть длина стороны АВ равна 2 * х сантиметров, тогда длина стороны АС = 3 * х сантиметров. Нам известно, что периметр АВС равен 28 сантиметров. Составляем уравнение:
2 * х + 2 * х + 3 * х = 28;
7 * х = 28;
х = 28 : 7;
х = 4 сантиметров;
2 * 4 = 8 сантиметров — длина АВ и ВС;
3 * 4 = 12 сантиметров — длина АС.
Максимальный объём цилиндра ≈0,4 см³
Объяснение:
Дано:
Цилиндр
Sполн = 2,8 см²
π ≈ 3
Найти:
V - объём цилиндра
Полная поверхность цилиндра
Sполн = 2Sосн + Sбок
Sполн = 2πR² + 2πRh
2πR² + 2πRh = 2.8
или
πR² + πRh = 1.4
Умножим на R
πR³ + πR²h = 1,4R
Объём цилиндра
V = Sосн · h = πR²h
тогда
πR³ + V = 1,4R
или
V = 1.4R - πR³
Производная
V' = 1.4 - 3πR²
V' = 0
1.4 - 3πR² = 0
R² = 1.4 : (3π) ≈ 0.16 (см)
R ≈ 0.4 (см)
При переходе через R = 0.39 cм производная V' меняет знак с + на -, следовательно в точке R≈0.39 cм объём V максимален
V = 1.4R - πR³ = 1.4 · 0.4 - 3 · 0.4³ = 0,368 (см³) ≈ 0,4 cм³