2. Докажите, что в равнобедренном треугольнике: а) биссект- рисы, проведенные из вершин при основании, равны; б) медиа- ны, проведенные из вершин при основании, равны. с чертежем
1) Дано: прямоугольный треугольник АВС. С=90 град. АВ - гипотенуза, АС катет, причем АВ=2АС. Доказать, что угол В=30 град. Док-во: продолжим прямую АС и отметим на ней точку К, АС=СК. Треугольники АВС и ВСК равны (по двум катетам - признак равенства прямоугольных треугольников). Тогда равны и стороны АВ и ВК. То есть треугольник АВК - равносторонний ( все углы по 60 град) и ВС является одновременно высотой, медианой и биссектрисой. То есть угол АВС=половине угла АВК = 60:2=30 град. ч.т.д. 2) Дано: АВС, СК - медиана к стороне АВ, т.е.АК=КВ. По условию СК=1/2*АВ=АК. Имеем два равнобедренных треугольника АКС и КСВ. Углы при основании равнобедренных треугольников равны(уг.САК=уг.АСК=α уг.КСВ=уг.СВК=β), Сумма углов треугольника =180 град 2α+2β=180 2(α+β)=180 α+β=90. То есть угол С=α+β=90 град.
Т.к. у ромба все стороны равны, а периметр это сумма всех сторон, то одна сторона ромба будет равна 48:4, т.е. 12. Площадь ромба равна стороне ромба в квадрате, умноженной на синус угла, т.е. 120 = 12^2sin угла Синус угла равен площадь робма разделить на квадрат стороны, т.е. 120:12^2, т.е. 120:144 По условию угол ромба, который надо найти - острый. Это означает что cos угла =корень(1-sin^2 A)=корень(1-(120\144)^2)= (1-120:144) (1+120:144) = (1-5:6) (1+5:6) = (1:6)* (11:6) = 11:36 По сновному тригонометрическому свойству находим тангенс tg угла=sin угла\cos, т.е. угол=120\144\(11\36)=30:11
Док-во: продолжим прямую АС и отметим на ней точку К, АС=СК. Треугольники АВС и ВСК равны (по двум катетам - признак равенства прямоугольных треугольников). Тогда равны и стороны АВ и ВК. То есть треугольник АВК - равносторонний ( все углы по 60 град) и ВС является одновременно высотой, медианой и биссектрисой. То есть угол АВС=половине угла АВК = 60:2=30 град. ч.т.д.
2) Дано: АВС, СК - медиана к стороне АВ, т.е.АК=КВ. По условию СК=1/2*АВ=АК. Имеем два равнобедренных треугольника АКС и КСВ. Углы при основании равнобедренных треугольников равны(уг.САК=уг.АСК=α уг.КСВ=уг.СВК=β), Сумма углов треугольника =180 град 2α+2β=180
2(α+β)=180 α+β=90. То есть угол С=α+β=90 град.
Площадь ромба равна стороне ромба в квадрате, умноженной на синус угла, т.е. 120 = 12^2sin угла
Синус угла равен площадь робма разделить на квадрат стороны, т.е.
120:12^2, т.е. 120:144
По условию угол ромба, который надо найти - острый. Это означает что cos угла =корень(1-sin^2 A)=корень(1-(120\144)^2)= (1-120:144) (1+120:144) = (1-5:6) (1+5:6) = (1:6)* (11:6) = 11:36
По сновному тригонометрическому свойству находим тангенс
tg угла=sin угла\cos, т.е.
угол=120\144\(11\36)=30:11