2 ИЗ Две прямые на плоскости называются параллельными, если они не пересекаются. b с а. На этом рисунке прямые аиь , прямые а и с у прямые bИс у Параллельные прямые обозначаются знаком ||. Запись а | b означает «прямая а параллельна прямой b». Если две прямые на плоскости перпендикулярну одной и той же прямой, то они параллельны.
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.
Теперь докажем, что отрезок MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.
1) Тр. КОМ - прямоугольный (диагонали в ромбе пересекаются и перпендикулярны)
Значит, угол КОМ=90 гр.
2) Угол МKP = углу MNP =80 гр. (прот. углы ромба равны)
Угол MKO= угол MNP/2= 80/2=40 гр.
3) Угол KMO = 90 гр. - угол MNP = 90-40=50 (сумма острых угол в прямоугольном треугольнике равна 90 гр.)
2.
1) Тр. ABM - равнобедренный (по условию AB=AM)
Значит, углы при основании равны. Угол BAM=углу BMA
Т.к. BC || AD (прот. стороны параллелограмма), то угол ВМА=углу MAD (накрест лежащие углы при параллельных прямых)
Следовательно, угол BAM=углу МАD, значит АМ - биссектриса
2) АВ=CD=8 (прот. стороны параллелограмма)
АВ=АМ=8 (по условию)
ВС=АМ+МС=8+4=12
P= 8+8+12+12=40