2.Из точки М, не принадлежащей плоскости, провести две наклонные МА и МВ и перпендикуляр МО. Вопросы к чертежу: 1)Какая точка является проекцией точки М? 2)Назовите отрезок, который равен расстоянию от точки М до плоскости? 3)Если МА=9см, а МВ=12см, то проекция которой наклонной будет больше? 4)Если АО=3см, а ОВ=1см, то которая наклонная длиннее? 5)Если МА : МВ = 5 : 6, то проекция которой наклонной будет больше
Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.
ответ: Угол DOM=69°
Объяснение: Сделаем рисунок. Обозначим точку пересечения АК и LD буквой Е и рассмотрим ∆ АЕД и ∆ LMD. Они прямоугольные ( DL перпендикулярна АК по условию) и имеют общий угол при вершине D. Он равен градусной мере развернутого угла без ∠DEA и без ∠ЕАD. Угол ЕDA= 90°-24°=66°. ⇒ ∠ МLD=∠КАD=24°
LM⊥AD (дано) ⇒ LМ║CD. ⇒ LМ=CD. Т.к. АВСD – квадрат, то LM=AD.
∆ АКD=∆ LDМ по катету ( LM=AD) и острому углу при вершине D. Поэтому KD=MD. Катеты прямоугольного треугольника АDМ равны. следовательно, его острые углы равны 45°. ⇒∠OMD=45°
Из суммы углов треугольника
Угол DOM=180°-∠ОМD-∠МDО=180°-45°-66°=69°