2. К вертикальной стенке прислонили лестницу. Длина лестницы раина 20 м. Конец лестницы, опирающийся на землю, находится на расстоянии 12 м от стены. Вычисли, на каком расстоянии очемли находится второй конец Лестницы этоо очень
Пусть катеты треугольника x и y. x^2+y^2=100. Если проекция меньшего катета 3,6 см, то проекция большего катета на гипотенузу=10-3,6=6,4 см. Пусть h- высота проведенная к гипотенузе. За т. Пифагора h^2=x^2-6,4^2=x^2-40,96 h^2=y^2-3,4^2=y^2-12,96 x^2-40,96=y^2-12,96 x^2-y^2=40,96-12,96 x^2-y^2=28 Решим систему из двух уравнений: x^2+y^2=100 и x^2-y^2=28 x^2=100-y^2, подставим во второе уравнение 100-y^2-y^2=28 -2y^2=-72 y^2=-72/-2=36 y=sqrt36=6 x^2=100-36=64 x=sqrt64=8 Найдем площадь треугольника S=6*8/2=24 см кв. p-полупериметр=(10+8+6)/2=12 r-радиус вписанной в треугольник окружности. r=S/p=24/12=2 ответ: 2 см.
1. В равнобедренном треугольнике АВС угол при вершине С=120° (так как равные углы при основании равны по 30°, а сумма внутренних углов треугольника равнв 180°). Значит основание Н перпендикуляра ВН из точки В к стороне АС будет лежать на продолжении стороны АС. В прямоугольном треугольнике CНВ (<H=90°) угол НСВ (смежный с углом С треугольники АВС) равен 180°-120°=60°. Тогда <HBC=30° и катет СН=5 (половина гипотенузы СВ). По Пифагору ВН=√(ВС²-НС²)=√(10²-5²)=√75см. Тогда в прямоугольном треугольнике ВКН гипотенуза НК - расстояние от точки К до прямой АС (перпендикуляр к АС по теореме о трех перпендикулярах). По Пифагору НК=√(ВН²-ВК²)=√(75+150)=15см. ответ: НК=15см. 2. 1) Точка М равноудалена от вершин треугольника,значит расстояния от основания перпендикуляра, опущенного из этой точки на плоскость АВС также равны. Следовательно, проекция Н точки М на плоскость АВС находится в середине гипотенузы АВ треугольника АВС и отрезок МН, принадлежащий плоскости АМВ, перпендикулярен плоскости АВС.Следовательно, плоскость АМВ перпендикулярна плоскости АВС, что и требовалось доказать. 2) Угол между плоскостями - двугранный угол - измеряется линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.Проведем плоскость МНР перпендикулярно ребру СВ двугранного угла между плоскостями АВС и СМВ. Для этого опустим перпендикуляр НР на прямую СВ и соединим точки М и Р. В прямоугольном треугольнике МРН <MPH - искомый угол, тангенс которого равен отношению МН/НР. Гипотенуза АВ=4√2см (по Пифагору). Тогда СН=НВ=АН=2√2см. НР- высота в равнобедренном треугольнике СНВ и НР=СН*НВ/СВ (свойство). НР=(2√2)*(2√2)/4=2см. Tgα=МН/НР=2√3/2=√3. α=arctg√3 = 60°. ответ: угол равен 60°. 3) Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. Значит искомый угол - угол МСН, тангенс которого равен отношению МН/СН или tgβ=2√3/2√2 =√1,5. Угол β=arctg√1,5 ≈ 50,5° Или так: по Пифагору МС=√(МН²+СН²)=√20=2√5см. Тогда Sinβ = МН/МС=2√3/2√5 =√0,6. β=arcsin0,77 ≈ 50,5°. ответ: угол равен arcsin√0,6 ≈ 50,5°. 3***. Расстояние от середины стороны АВ до плоскости ВМС - это перпендикуляр НТ из прямого угла МНР (точка Н совпадает с точкой Е) к гипотенузе МР треугольника МРН. по свойству он равен НТ=МН*НР/МР. МР=√(МН²+НР²)=√(12+4)=4. Тогда НТ=2√3*2/4=√3. ответ: расстояние равно √3.
Пусть катеты треугольника x и y. x^2+y^2=100. Если проекция меньшего катета 3,6 см, то проекция большего катета на гипотенузу=10-3,6=6,4 см. Пусть h- высота проведенная к гипотенузе. За т. Пифагора
h^2=x^2-6,4^2=x^2-40,96
h^2=y^2-3,4^2=y^2-12,96
x^2-40,96=y^2-12,96
x^2-y^2=40,96-12,96
x^2-y^2=28
Решим систему из двух уравнений:
x^2+y^2=100 и x^2-y^2=28
x^2=100-y^2, подставим во второе уравнение
100-y^2-y^2=28
-2y^2=-72
y^2=-72/-2=36
y=sqrt36=6
x^2=100-36=64
x=sqrt64=8
Найдем площадь треугольника S=6*8/2=24 см кв. p-полупериметр=(10+8+6)/2=12
r-радиус вписанной в треугольник окружности.
r=S/p=24/12=2
ответ: 2 см.
В прямоугольном треугольнике CНВ (<H=90°) угол НСВ (смежный с углом С треугольники АВС) равен 180°-120°=60°. Тогда <HBC=30° и катет СН=5 (половина гипотенузы СВ).
По Пифагору ВН=√(ВС²-НС²)=√(10²-5²)=√75см. Тогда в прямоугольном треугольнике ВКН гипотенуза НК - расстояние от точки К до прямой АС (перпендикуляр к АС по теореме о трех перпендикулярах).
По Пифагору НК=√(ВН²-ВК²)=√(75+150)=15см.
ответ: НК=15см.
2. 1) Точка М равноудалена от вершин треугольника,значит расстояния от основания перпендикуляра, опущенного из этой точки на плоскость АВС также равны. Следовательно, проекция Н точки М на плоскость АВС находится в середине гипотенузы АВ треугольника АВС и отрезок МН, принадлежащий плоскости АМВ, перпендикулярен плоскости АВС.Следовательно, плоскость АМВ перпендикулярна плоскости АВС, что и требовалось доказать.
2) Угол между плоскостями - двугранный угол - измеряется линейным углом, то есть углом, образованным пересечением двугранного угла с плоскостью, перпендикулярной к его ребру.Проведем плоскость МНР перпендикулярно ребру СВ двугранного угла между плоскостями АВС и СМВ. Для этого опустим перпендикуляр НР на прямую СВ и соединим точки М и Р. В прямоугольном треугольнике МРН <MPH - искомый угол, тангенс которого равен отношению МН/НР.
Гипотенуза АВ=4√2см (по Пифагору). Тогда СН=НВ=АН=2√2см.
НР- высота в равнобедренном треугольнике СНВ и НР=СН*НВ/СВ (свойство). НР=(2√2)*(2√2)/4=2см.
Tgα=МН/НР=2√3/2=√3. α=arctg√3 = 60°.
ответ: угол равен 60°.
3) Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. Значит искомый угол - угол МСН, тангенс которого равен отношению МН/СН или tgβ=2√3/2√2 =√1,5. Угол β=arctg√1,5 ≈ 50,5°
Или так: по Пифагору МС=√(МН²+СН²)=√20=2√5см.
Тогда Sinβ = МН/МС=2√3/2√5 =√0,6. β=arcsin0,77 ≈ 50,5°.
ответ: угол равен arcsin√0,6 ≈ 50,5°.
3***. Расстояние от середины стороны АВ до плоскости ВМС - это перпендикуляр НТ из прямого угла МНР (точка Н совпадает с точкой Е) к гипотенузе МР треугольника МРН. по свойству он равен
НТ=МН*НР/МР. МР=√(МН²+НР²)=√(12+4)=4. Тогда НТ=2√3*2/4=√3.
ответ: расстояние равно √3.