2- mashq. Nuqtalar oʻrniga qavs ichidagi egalik qo'shimcha- laridan mosini qoʻyib, gaplarni ko'chiring.
1. Ustoz... (-lari
, -imiz shu sinfda o'qiganlari haqida
o'rgatdilar. 3. Partadosh... (-miz, -ing) bilan do'st boʻi
,
unga yaxshi muomala qil. 4. Birdamlik haqidagi fikr... (-im,
-ingiz) menga yoqdi. 5. Yordam... (-ing, -) uchun senga
rahmat.
gapirib berdilar. 2. Bu hunarni menga bobo... (-si, -m)
Объяснение:
Из условия нам известно, что один из острых углов прямоугольного треугольника равен 60°, а разность гипотенузы и меньшего катета равна 28 см.
Давайте прежде всего найдем третий угол прямоугольного треугольника, зная, что сумма углов треугольника равна 180°.
180° - 90° - 60° = 30° третий угол треугольника.
Известно, что катет лежащий напротив угла в 30° равен половине гипотенузы, а так же известно, что напротив меньшего угла прямоугольного треугольника лежит меньшая сторона.
Составим и решим уравнение.
Пусть меньший катет равен x, а гипотенуза равна 2x.
Исходя из условия:
2x - x = 28;
x = 28 см катет прямоугольного треугольника.
Ищем гипотенузу 2x = 2 * 28 = 56 см.
Пусть Н - середина стороны ВС.
АН⊥ВС как медиана и высота правильного треугольника АВС,
SH⊥ВС как медиана и высота равнобедренного треугольника SBC.
∠SHA = 45° - линейный угол двугранного угла между плоскостью боковой грани и плоскостью основания.
ΔSOH: ∠SOH = 90°, ∠SHO = 45°, значит это равнобедренный прямоугольный треугольник, тогда
ОН = SH = 4 м, SH = 4√2 м
ОН - радиус окружности, вписанной в правильный треугольник:
ОН = АВ√3/2
АВ = 2 · ОН / √3 = 2 · 4 / √3 = 8√3/3 м
Sбок = 1/2 Pосн · SH
Sбок = 1/2 · 3 · 8√3/3 · 4√2 = 16√6 м²