2. На рисунке 129 изображены две параллельные прямые а и b и прямая с, их пересекающая. Постройте прямые, симметричные данным при осевой сим- метрии относительно оси с.
Обозначим треугольники буквами АВС и А1В1С1. Причем ВС=42 см, АС=14 см, АВ=40 см. т.к. треугольники подобны, то ВС:В1С1=АС:А1С1. С другой стороны А1С1+В1С1=108. Отсюда А1С1=108-В1С1. Подставим в первую формулу вместо А1С1 выражение 108-В1С1. Получим ВС:В1С1=АС:(108-В1С1). Решаем АС*В1С1=ВС*(108-В1С1). Для удобства записи пусть В1С1=Х, тогла 40Х=42(108-Х). Получаем Х=27=В1С1. Коэффициент подобия этих треугольников=ВС:В1С1=42:27=14:9. т.к. треугольники подобны, то АС:А1С1=14:9. Отсюда А1С1=9*АС/14=9 см. АВ:А1В1=14:9. Отсюда А1В1=9АВ/14= целое не выходит. Периметр это сумма длин всех сторон треугольника.
Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²
Объяснение:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
ВС:В1С1=АС:(108-В1С1). Решаем АС*В1С1=ВС*(108-В1С1). Для удобства записи пусть В1С1=Х, тогла 40Х=42(108-Х). Получаем Х=27=В1С1.
Коэффициент подобия этих треугольников=ВС:В1С1=42:27=14:9. т.к. треугольники подобны, то АС:А1С1=14:9. Отсюда А1С1=9*АС/14=9 см.
АВ:А1В1=14:9. Отсюда А1В1=9АВ/14= целое не выходит. Периметр это сумма длин всех сторон треугольника.
Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²
Объяснение:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
64-16х-16=0
-16х=-48
х=3. Центр имеет координаты О(3;0).
Найдем R=√( (3-0)²+(0-4)² )=5.
(x− 3)²+y²=5²