2. Наибольшее и наименьшее расстояния от данной точки, располо- женной вне окружности, до точек окружности равны соответственно 30 cm и 10 cm. Найдите радиус данной окружности. А) 20 cm; Б) 10 cm; B) 15 cm; Г) 5 cm.
равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
Проанализируем исходные данные.
Дан эллипс с центром в точке (2:-1) и малой осью, равной 4.
Одна из директрис задана уравнением y+5=0, что равносильно у = -5.
Тогда расстояние от центра до директрисы равно |-5 - (-1)| = 4.
Рассмотрим точку эллипса на малой оси. Она удалена от центра на 4 и от директрисы на 4 единицы (так как малая ось параллельна директрисе).
Так как все точки параболы равноудалены от директрисы и фокуса, то получается, что фокус параболы находится в её центре.
Это говорит о том, что мы имеем не эллипс, а окружность радиуса 4.
Её уравнение: (х - 2)² + (у + 1)² = 4².