2.Найдите сторону квадрата равновеликого треугольнику с площадью 72см² 3. Периметр параллелограмма равен 54см. Найдите площадь параллелограмма, если его высота равна 6см, а один из острых углов равен 30°.
4.Боковая сторона равнобедренной трапеции АВСD равна 5 см,а диагональ ВD-4√5см. Отрезок AN,соединяющий вершину острого угла А трапеции и основание высоты, проведенной из вершины В.Найдите площадь трапеции.
5.В прямоугольном треугольнике гипотенуза относится к катету как 5:4. Найдите высоту, опущенную на гипотенузу, если второй катет равен 9см.
Задача: Знайти радіус кола, вписаного в рівносторонній трикутник, якщо радіус кола, описаного навколо цього трикутника, дорівнює 16 см.
Рішення:
Формула кола, вписаного в рівносторонній трикутник:
, де а — сторона правильного тр-ка
Знайдемо сторону а через формула кола, описаного навколо рівностороннього тр-ка:
Підставимо значення у формулу кола, вписаного в рівносторонній тр-к
Відповідь: Радіус кола, вписаного в рівносторонній трикутник, рівний 8 см.
Задача: Точка перетину висот BK і PH трикутника BEP є центром вписаного в нього кола. Доведіть, що тр-к BEP рівносторонній.
Рішення:
Центром вписаного в коло трикутника є перетин бісектриса тр-ка, отже і BK та PH є бісектрисами. Висота є бісектрисою, якщо суміжні сторони рівні.
BK — висота/бісектриса ⇒ PB = EB;
PH — висота/бісектриса ⇒ PB = EP.
Відповідно, PB = EB = EP ⇒ ΔBEP — рівносторонній, що і потрібно було довести.
1. Расстояние от центра окружности до точки, из которой проведены две касательные, делит угол A пополам. Значит угол HAO равен 30 градусам. Проведем радиус от точки O в точку касания окружности с касательной. Радиус, проведенный из центра окружности к точке касания является перпендикуляром к касательной. Получается прямоугольный треугольник HAO. В прямоугольном треугольнике катет, лежащий против угла в 30 градусов половине гипотенузы. OA - гипотенуза
OH=1/2*6
OH=3
OH-радиус окружности
ответ:R=3
2.28 градусов
3.7