2) Найти длину бокового ребра правильной четырехугольной пирамиды, если сторона ее основания и высоты соответственно равны 12 и 3 см А) √66
Б) 6√2
В) 9
Г) 8√2
3) Найти длину бокового ребра правильной четырехугольной пирамиды, если сторона ее основания и высоты соответственно равны 10 и 4 см
А) √66
Б) 6√2
В) 9
Г) 8√2
Точка F - точка пересечения биссектрисы угла при основании и высоты BD, H - точка пересечения медиан и делятся этой точкой на две части в отношении 2:1, считая от вершины.
HD = 5 см, следовательно BH = 2 * 5 = 10 см. Высота равнобедренного треугольника BD = 5 + 10 = 15 см.
Из условия BF/FD = 5/4 , пусть BF = 5x, тогда FD = 4x. Тогда по свойству биссектрисы для треугольника ABD
AB/AD = BF/FD = 5/4 ⇒ AB = 5y и AD = 4y
По теореме Пифагора из прямоугольного треугольника ABD
25y² = 16y² + 15²
9y² = 225
y = 5
Следовательно, AB = BC = 25 см и AC = 2*AD = 40 см.
Периметр ΔABC: P = AB + BC + AC = 25+25+40 = 90 см
ответ: 90 см.
Обозначим длину касательной буквой К. Точку, из которой повели касательную и секущую назовём А.
Тогда длина внешнего отрезка секущей по условию К-5
Тогда длина внутреннего отрезка К+5
Тогда расстояние от точки А до точки выхода секущей из окружности будет (К-5) + (К+5) = 2К.
Теперь применяем теорему о секущей.
K^2 = (К-5) * 2К
Решаем,
K^2 = 2*K^2 - 10*К
K^2 = 10К
случай К=0 отбрасываем как неподходящий по смыслу задачи,
остаётся длина касательной К=10 см -- такой у меня получился ответ.
Но ты лучше проверь.