№2 Найти координаты точки А1, в которую переходит точка А(-6;-4), если точка С(3;-3) при параллельном переносе переходит в точку С1(-5;4).
№3 Построить образ тупоугольного треугольника МКР при : 1) симметрии относительно точки О; 2) симметрии относительно прямой, содержащей сторону МК; 3) повороте на 600 относительно точки О против часовой стрелки.
P.s (С обьяснение и рисунком
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
Два решения
1)
Из треугольников ABC, ACD соответственно по теор синусов
CAB=a
CAD=b
BC/sina=AC/sin(a+2b)
CD/sinb=AC/sin(2b+a)
но BC=CD , тогда
sina/sin(a+2b) = sinb/sin(b+2a)
sina*sin(b+2a) - sinb*sin(a+2b) = 0
cos(a-b-2a)-cos(b+3a) - cos(b-a-2b)+cos(a+3b)=0
cos(a+3b)=cos(b+3a)
a+3b=b+3a
2b=2a
a=b
CAB=CAD
2)
Пусть AECF точка O пересечения диагоналей и OE=OF рассмотрим симметрию относительно точки O, точка Е перейдет в точку F, точка B в точку D по определению симметрии так как CB=CD точка А перейдет в себя, тогда AB=AD тогда треугольники ABC=ACD откуда
180-2a-b=180-2b-a
3a=3b
a=b