по т косинусов найду BD
BD^2=AB^2-AD^2-2*AB*AD*cos<A=7^2+15^2-2*7*15*0.5=274-105=169=13^2
BD=13
У вписанного четырехугольника суммы противоположных углов 180 °
<C=180-<A=180-60=120°
Тогда по той же теореме выражу BD из ΔBCD
BD^2=BC^2+CD^2-2*BC*CD*cos<C
169=(x+1)^2+x^2-2x(x+1)*cos120
169=x^2+2x+1+x^2-2x(x+1)(-0.5)
169=2x^2+2x+1+x^2+x
169=3x^2+3x+1
3x^2+3x-168=0-делю на 3
x^2+x-56=0
D=1+224=225=15^2
x=(-1+15)/2=7
Тогда CD=7;BC=8
S(ABD)=0.5AB*AD*sin<A=0.5*7*15*√3/2=105√3/4
S(BCD)=0.5*BC*CD*sin<C=0.5*8*7*sin120=56√3/4
S(ABD)/S(BCD)=105/56
Объяснение:
1) Р Δ = 30 см.
Пусть а, b, с - стороны треугольника.
Если а = 20 см, то а + b + с = Р Δ ;
20 + b + с = 30; b + с = 30 - 20; b + с = 10 (см).
Для сторон треугольника должна выполняться неравенство треугольника:
а < b + с (20> 10); b <а + с; с <b + а.
Поскольку неравенство не выполняется, то сторона
не может равняться 20 см.
2) Р Δ = 30 см.
Если а = 15 см, то: а + b + с = Р Δ ;
15 + b + с = 30; b + с = 30 - 15; b + с = 15 (см).
a < b + c (15 = 15); b <а + с; с <b + а.
не может равняться 15 см.
по т косинусов найду BD
BD^2=AB^2-AD^2-2*AB*AD*cos<A=7^2+15^2-2*7*15*0.5=274-105=169=13^2
BD=13
У вписанного четырехугольника суммы противоположных углов 180 °
<C=180-<A=180-60=120°
Тогда по той же теореме выражу BD из ΔBCD
BD^2=BC^2+CD^2-2*BC*CD*cos<C
169=(x+1)^2+x^2-2x(x+1)*cos120
169=x^2+2x+1+x^2-2x(x+1)(-0.5)
169=2x^2+2x+1+x^2+x
169=3x^2+3x+1
3x^2+3x-168=0-делю на 3
x^2+x-56=0
D=1+224=225=15^2
x=(-1+15)/2=7
Тогда CD=7;BC=8
S(ABD)=0.5AB*AD*sin<A=0.5*7*15*√3/2=105√3/4
S(BCD)=0.5*BC*CD*sin<C=0.5*8*7*sin120=56√3/4
S(ABD)/S(BCD)=105/56
Объяснение:
1) Р Δ = 30 см.
Пусть а, b, с - стороны треугольника.
Если а = 20 см, то а + b + с = Р Δ ;
20 + b + с = 30; b + с = 30 - 20; b + с = 10 (см).
Для сторон треугольника должна выполняться неравенство треугольника:
а < b + с (20> 10); b <а + с; с <b + а.
Поскольку неравенство не выполняется, то сторона
не может равняться 20 см.
2) Р Δ = 30 см.
Пусть а, b, с - стороны треугольника.
Если а = 15 см, то: а + b + с = Р Δ ;
15 + b + с = 30; b + с = 30 - 15; b + с = 15 (см).
Для сторон треугольника должна выполняться неравенство треугольника:
a < b + c (15 = 15); b <а + с; с <b + а.
Поскольку неравенство не выполняется, то сторона
не может равняться 15 см.