Пусть АК - биссектриса треугольника АВС , ВМ - его медиана. Т.к. биссектриса треугольника АВМ перпендикулярна стороне ВМ, она является его высотой. Если биссектриса треугольника совпадает с высотой, она является и его медианой,⇒ треугольник ВАМ - равнобедренный. АВ=АМ. ВМ - медиана треугольника АВС, ⇒ АВ=АМ=МС, и АС=2 АВ. Пусть средняя по длине сторона равна х Если предположить, что АВ - средняя сторона, то АС=х+1, ВС=х-1 Тогда АС=2х=х+1, откуда х=1, и ВС=1-1=0, чего быть не может. ⇒ ВС- средняя сторона. ВС=х, АС=х+1, АВ=х-1 АС=2(х-1)=2х-2 2х-2=х+1 ⇒ х=3 ВС=3 АВ=3-1=2 АС=3+1=4 - это наибольшее значение самой длинной стороны
Минут 5 ломал голову, с чего вообще начать) Потом вспомнил про подобие треугольников.
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
Т.к. биссектриса треугольника АВМ перпендикулярна стороне ВМ, она является его высотой.
Если биссектриса треугольника совпадает с высотой, она является и его медианой,⇒
треугольник ВАМ - равнобедренный.
АВ=АМ.
ВМ - медиана треугольника АВС, ⇒
АВ=АМ=МС, и
АС=2 АВ.
Пусть средняя по длине сторона равна х
Если предположить, что АВ - средняя сторона, то
АС=х+1, ВС=х-1
Тогда АС=2х=х+1, откуда х=1, и ВС=1-1=0, чего быть не может. ⇒
ВС- средняя сторона.
ВС=х, АС=х+1, АВ=х-1
АС=2(х-1)=2х-2
2х-2=х+1 ⇒
х=3
ВС=3
АВ=3-1=2
АС=3+1=4 - это наибольшее значение самой длинной стороны
1. Проведём отрезки BD и AC (см. рисунок). Треугольники, образованные таким образом, будут подобными, поскольку у них равные углы при вершине K, а также угол C равен углу B (потому что они опираются на одну и ту же дугу), из чего по первому признаку подобия треугольников следует их подобие.
2. Значит, стороны треугольников пропорциональны. Очевидно, что если их сумма в два раза больше суммы другого треугольника, то и стороны тоже в два раза больше:
3. Их произведение