Как это ни удивительно - доказательство есть уже в самой формулировке теоремы.
Поскольку радиус перпендикулярен прямой, то его конец - это ближайшая от центра окружности точка на прямой. Все остальные точки прямой находятся от центра на БОЛЬШЕМ расстоянии, поскольку наклонная всегда длинее перпендикуляра.
Поскольку точки ОКРУЖНОСТИ равноудалены от центра, то ВСЕ точки прямой, за исключением конца радиуса, лежат ЗА ПРЕДЕЛАМИ области, ограниченной окружностью (по-просту - дальше от центра).
Есть только одна общая точка - это конец радиуса. А это и есть касание, когда у окружности и прямой только одна общая точка. :)
ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
Как это ни удивительно - доказательство есть уже в самой формулировке теоремы.
Поскольку радиус перпендикулярен прямой, то его конец - это ближайшая от центра окружности точка на прямой. Все остальные точки прямой находятся от центра на БОЛЬШЕМ расстоянии, поскольку наклонная всегда длинее перпендикуляра.
Поскольку точки ОКРУЖНОСТИ равноудалены от центра, то ВСЕ точки прямой, за исключением конца радиуса, лежат ЗА ПРЕДЕЛАМИ области, ограниченной окружностью (по-просту - дальше от центра).
Есть только одна общая точка - это конец радиуса. А это и есть касание, когда у окружности и прямой только одна общая точка. :)
ABC - равнобедренный треугольник, AC = 8, P_ABC = 18, V_тела вращения = V_цилиндра с высотой равной основанию треугольника и радиусом равным высоте треугольника - 2*V_конуса с радиусом основания равным высоте треугольника и высотой равным половине основания треугольника
V_цилиндра = pi*r^2*h
Радиус найдём воспользовавшись теоремой Пифагора и тем, что наш треугольник равнобедренный. AB = BC = (P_ABC - AC)/2 = (18-8)/2 = 5, r_основания цилиндра (=высоте треугольника) = V(AB^2+(AC/2)^2) = V25 + 16 = V41 (Корень), (высоту искали из прямоугольного треугольника ABC', C' делит AC пополам)
V_цилиндра = pi*r^2*h= pi * 41 * 8 =328pi
V_конуса = 1/3*pi*(r_конуса)^2*h_конуса = 1/3*pi*41*4 =123/3*pi
V_тела вращения = V_цилиндра - 2*V_конуса = 328pi - 246/3*pi = (328-82)pi = 246pi