Через конец А отрезка AB длиной b проведена плоскость, перпендикулярная отрезку, и в этой плоскости проведена прямая. Найдите расстояние от точки В до прямой, если расстояние от точки А до нее равно а.
Решение.
Пусть в плоскости проведена прямая р.
Расстоянием от точки В до прямой р является длина перпендикуляра , те ВР⊥ р. AB⊥α ⇒ AB⊥AP.
По т о трех перпендикулярах : если наклонная ВР⊥ р ( прямой лежащей в плоскости ) , то и проекция АР⊥ р. Тогда расстоянием от точки А до прямой р будет длина перпендикуляра АР=а.
Т к у ромба все стороны раны, и известен периметр, найдем длины сторон: АВ=ВС=СК=АК=16/4=4см. Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)
Через конец А отрезка AB длиной b проведена плоскость, перпендикулярная отрезку, и в этой плоскости проведена прямая. Найдите расстояние от точки В до прямой, если расстояние от точки А до нее равно а.
Решение.
Пусть в плоскости проведена прямая р.
Расстоянием от точки В до прямой р является длина перпендикуляра , те ВР⊥ р. AB⊥α ⇒ AB⊥AP.
По т о трех перпендикулярах : если наклонная ВР⊥ р ( прямой лежащей в плоскости ) , то и проекция АР⊥ р. Тогда расстоянием от точки А до прямой р будет длина перпендикуляра АР=а.
ΔАВР-прямоугольный , по т Пифагора ВР=√(а²+b²).
Рассмотри один из прямоугольных треугольников, образовавшихся при пересечении диагоналей ромба: треугольник АОВ: против угла в 30 градусов (АВО) лежит катет, равный половине гипотенузы, т е АО=4/2=2см. АО=ОС=2см, а ВО=ОК т к диагонали ромба точкой пересечения делятся пополам.Найдем длину ВО по теореме Пифагора, из треугольника АВО: ВО=ОК=корень из АВ^2-AO^2=корень из 16-4=2корня из 3(см).Тогда ВК=ВО+ОК=2корня из 3+2корня из 3=4корня из 3(см). АС=АО+ОС=2+2=4см.Площадь ромба равна половине произведения длин его диагоналей:S=1/2*АС*ВК=1/2*4*4корня из 3=8корней из3(см^2).ОТВЕТ: 8корней из3(см^2)