2. Проверьте подобие треугольников со сторонами АВ = 20 см, ВС = 25 см, АС = 35 см и МK = 14 см, KР = 10 см, МР = 8 см. Если треугольники подобны, вычислите коэффициент подобия, запишите равенство трёх отношений сторон треугольников.
Рассмотрим диагональное сечение призмы, оно будет представлять из себя прямоугольник вписанный в окружность радиуса R, так как диагональ призмы будет являться его диаметром , то D = 2R
угол, который образует диагональ призмы с боковой гранью, равен углу, который образует диагональ призмы с диагональю боковой грани (так как последняя является ее ортогональной проекцией)
теперь рассмотрим сечение призмы плоскостью, проходящей черз диагональ призмы и диагональ боковой грани призмы : это сечение - прям. треугольник. находим диагональ боковой грани: d = cosα * D = 2R* cosα
находим ребро основания из того же прямоуг. треугольника: l = sinα * D = 2R * sinα
высота нашей призмы равна боковой грани, а ее мы можем найти пот. Пифагора, зная d и l: h = √ (d² - l²) =√(4R² *cos²α - 4R²* sin²α) = 2R√(cos²α - sin²α)
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
угол, который образует диагональ призмы с боковой гранью, равен углу, который образует диагональ призмы с диагональю боковой грани (так как последняя является ее ортогональной проекцией)
теперь рассмотрим сечение призмы плоскостью, проходящей черз диагональ призмы и диагональ боковой грани призмы : это сечение - прям. треугольник.
находим диагональ боковой грани:
d = cosα * D = 2R* cosα
находим ребро основания из того же прямоуг. треугольника:
l = sinα * D = 2R * sinα
высота нашей призмы равна боковой грани, а ее мы можем найти пот. Пифагора, зная d и l:
h = √ (d² - l²) =√(4R² *cos²α - 4R²* sin²α) = 2R√(cos²α - sin²α)
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.