Треугольник АВС - прямоугольный, ∠В=90°, поскольку у в прямоугольнике все углы =90° Сумма углов любого треугольника 180°, в т.ч. и нашего треугольника АВС. ∠А+∠В+∠С=90° Поскольку по условию задания CAB=2*ACB, значит в треугольнике АВС ∠А=2*∠С, выходит 2*∠С+90°+∠С=180° 3*∠С=90° ∠С=30°. Значит ∠А=2*∠С=2*30°=60°. Рассмотрим прямоугольный треугольник АВС дальше: АС-гипотенуза, АВ и ВС - это катеты cos ∠А=АВ/АС sin ∠А=ВС/АС
cos ∠А=cos 60°=1/2=0,5 sin ∠А=sin 60°=√3/2=0,5√3
cos ∠А=АВ/АС 0,5=АВ/АС, отсюда АВ=0,5АС=0,5*10см=5см
sin ∠А=ВС/АС 0,5√3=ВС/АС, отсюда ВС=0,5АС√3=0,5*10√3=5√3 см
У прямоугольника противоположные стороны равны, значит АВ=СЕ=5 см ВС=АЕ=5√3 см
Периметр равен сумме длины всех сторон прямоугольника, то есть Периметр=АВ+ВС+СЕ+АЕ Периметр=5+ 5√3+ 5+5√3 Периметр=10+10√3 Периметр=10*(1+√3) см
Рассмотрим условие. Сумма углов треугольника 180º. ∠А+∠В+∠С=180° Если ∠AFC=128°, т.е. меньше угла В, то сумма углов ∆ АFС будет ∠С+0,5∠А+ ∠ AFC<142°=меньше 180°. Сделав рисунок, убедиться в этом несложно. Итак, условие задачи должно быть таким: В треугольнике ABC проведена биссектриса AF, угол AFC=142°, угол ABC=128°. Найдите угол ABC. ответ дайте в градусах. ---------- Решение: ∠ВFA и ∠CFA смежные,⇒ ∠ВFA=180°-142°=38°⇒ ∠BAF=180°-128°-38°=14° Половина ∠BAF=14º⇒∠BAC=28° ∠АСВ =180°-128°-28°=24° Его можно найти и из ∆ AFC: Угол AFB внешний при вершине F и равен сумме ∠FAC+∠FCA⇒ ∠ACB=∠FCA=38°-14°=24°
Сумма углов любого треугольника 180°, в т.ч. и нашего треугольника АВС.
∠А+∠В+∠С=90°
Поскольку по условию задания CAB=2*ACB, значит в треугольнике АВС
∠А=2*∠С, выходит
2*∠С+90°+∠С=180°
3*∠С=90°
∠С=30°.
Значит ∠А=2*∠С=2*30°=60°.
Рассмотрим прямоугольный треугольник АВС дальше:
АС-гипотенуза, АВ и ВС - это катеты
cos ∠А=АВ/АС
sin ∠А=ВС/АС
cos ∠А=cos 60°=1/2=0,5
sin ∠А=sin 60°=√3/2=0,5√3
cos ∠А=АВ/АС
0,5=АВ/АС, отсюда АВ=0,5АС=0,5*10см=5см
sin ∠А=ВС/АС
0,5√3=ВС/АС, отсюда ВС=0,5АС√3=0,5*10√3=5√3 см
У прямоугольника противоположные стороны равны, значит
АВ=СЕ=5 см
ВС=АЕ=5√3 см
Периметр равен сумме длины всех сторон прямоугольника, то есть
Периметр=АВ+ВС+СЕ+АЕ
Периметр=5+ 5√3+ 5+5√3
Периметр=10+10√3
Периметр=10*(1+√3) см
ответ: периметр прямоугольника = 10*(1+√3) см
Сумма углов треугольника 180º.
∠А+∠В+∠С=180°
Если ∠AFC=128°, т.е. меньше угла В, то сумма углов ∆ АFС будет
∠С+0,5∠А+ ∠ AFC<142°=меньше 180°.
Сделав рисунок, убедиться в этом несложно.
Итак, условие задачи должно быть таким:
В треугольнике ABC проведена биссектриса AF, угол AFC=142°, угол ABC=128°.
Найдите угол ABC. ответ дайте в градусах.
----------
Решение:
∠ВFA и ∠CFA смежные,⇒
∠ВFA=180°-142°=38°⇒
∠BAF=180°-128°-38°=14°
Половина ∠BAF=14º⇒∠BAC=28°
∠АСВ =180°-128°-28°=24°
Его можно найти и из ∆ AFC:
Угол AFB внешний при вершине F и равен сумме ∠FAC+∠FCA⇒
∠ACB=∠FCA=38°-14°=24°