Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис). Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е. АО=ВО=СО, .Эти отрезки - проекции наклонных МА, МВ, МС Поскольку проекции равны, то и наклонные равны. Т.е. МА=МВ=МС МА по т. Пифагора МА=√ (АО²+МО²) АО - радиус описанной окружности и может быть найден по формуле R=a/√3 или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО. h=a√3):2=6√3):2=3√3 AO=3√3):3)·2=2√3 МА=√(АО² + МО²)=√(12+4)=4 см
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
h=a√3):2=6√3):2=3√3
AO=3√3):3)·2=2√3
МА=√(АО² + МО²)=√(12+4)=4 см
Длина трубы 41 целая 80/81 метров.
Объяснение:
Труба BC дает тень AC, кол DE дает тень DA.
В ΔABC BC║DE, так как труба и кол вертикальны, т.е. стоят под углом 90° к поверхности земли.
ΔABC подобен ΔADE по двум углам: ∠A общий, ∠ACB = ∠ADE = 90° (или как соответствующие углы при параллельных прямых BC║DE и секущей AC).
Из подобия треугольников следует:
CB/ED = CA/DA; CB / 1,9 м = 35,8 м / 1,62 м; СВ = (35,8 м * 1,9 м)/1,62 м = 68,02 /1,62 м = 41 целая 160/162 м = 41 целая 80/81 метров.
Длина трубы 41 целая 80/81 метров.