пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.
Тк диагональ (а) перпендикулярна боковой стороне (а) она образовала прямоугольный треугольник, катеты(а) это сторона и диагональ, а гипотенуза это основание трапеции(b). Один из углов равен 45, а др 90, следовательно третий 45 (сумма углов в треугольнике 180 градусов) Следовательно мы получили ранобедренный прямоугольный треугольник. По теореме пифагора находим сторону треугольника a^2+a^2=b^2 2а^2=324 а^2=162 Затем проводим из прямого угла высоту, которая в этом треугольнике также и медиана и бессиктриса (c), и также высота трапеции, она поделила основание пополам (9cm -d), в получившемся треугольнике ищем один из катетов по теореме пифагора а^2=d^2+c^2 162=81+c^2 C^2=162-81 C^2=81 C=81
пусть ad> bc , тогда острые углы равные 75 и 15 гр лежат при оснований ad , положим что y,w середины сторон ab и cd соответственно , тогда yw средняя линия трапеции , значит ad+bc=2yw из условия мы знаем что yw равна либо 15 либо 7 , положим что ab и cd пересекаются в точке e , тогда aed=180-(75+15)=90 , положим также что z,x это середины сторон основании bc,ad соотвественно , пусть n точка пересечения yw и zx , тогда по замечательному свойству трапеции точки e,z,x лежат на одной прямой , учитывая что угол aed прямой , получаем что ax=ex=ad/2 , ez=bz=bc/2 , но так как ex=ez+zx откуда окончательно получаем две системы
{ad-bc=2*7
{ad+bc=2*15
или
{ad-bc=2*15
{ad+bc=2*7
подходит решение первой системы , так как они положительны , складывая получаем ad=22 , bc=8 , значит ответ bc=8.
Следовательно мы получили ранобедренный прямоугольный треугольник. По теореме пифагора находим сторону треугольника a^2+a^2=b^2
2а^2=324
а^2=162
Затем проводим из прямого угла высоту, которая в этом треугольнике также и медиана и бессиктриса (c), и также высота трапеции, она поделила основание пополам (9cm -d), в получившемся треугольнике ищем один из катетов по теореме пифагора
а^2=d^2+c^2
162=81+c^2
C^2=162-81
C^2=81
C=81