Дано: 4х-угольник АБСД. АС и БД - биссектрисы. Точка О является точкой их пересечения, и делит диагонали пополам, а значит БО = ОД, а АО = ОС. Если диагонали являются биссектрисами, то делят углы пополам, а сам 4х угольник на 4 треугольника. Рассмотрим треугольники СОБ, АОБ, АОД и СОД. угол ОАД = углу ОДА, угол ОСД = углу ОДС, угол ОСБ = углу ОБС, угол ОБА = углу ОАБ. Исходя из всего этого можем сказать, что треугольники СОБ, АОБ, АОД и СОД - равнобедренные и равны между собой. А так как они равны между собой, то и их основания БС, СД, АД и АБ - равны, а это значит, что АБСД - ромб
Касательная Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Свойства касательной
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания. Свойства касательной Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. Свойства касательной ХордаХорда
Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром. Свойства хорд
Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде. Свойства хорд
Дуги, заключенные между параллельными хордами, равны. Свойства хорд
Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.
Рассмотрим треугольники СОБ, АОБ, АОД и СОД. угол ОАД = углу ОДА, угол ОСД = углу ОДС, угол ОСБ = углу ОБС, угол ОБА = углу ОАБ. Исходя из всего этого можем сказать, что треугольники СОБ, АОБ, АОД и СОД - равнобедренные и равны между собой.
А так как они равны между собой, то и их основания БС, СД, АД и АБ - равны, а это значит, что АБСД - ромб
Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.
Свойства касательной
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Свойства касательной
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Свойства касательной
ХордаХорда
Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.
Свойства хорд
Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.
Свойства хорд
Дуги, заключенные между параллельными хордами, равны.
Свойства хорд
Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM•MB = CM•MD.