ЭТО утверждение верно , если в основании лежит РАВНОСТОРОННИЙ треугольник и вершина проецируется в его ЦЕНТР. Но по условию Основанием пирамиды служит равнобедренный треугольник
В пирамиде ребра b=13 см
В равнобедренном треугольнике
- высота h= 9 см
- основание/сторона a=6 м
Боковая грань, которая опирается на сторону ( а) –это равнобедренный треугольник.
Апофема этой боковой грани по теореме Пифагора
A^2=b^2-(a/2)^2 =13^2-(6/2)^2=160 ; A=4 √10 см
Апофема(А)+противоположное ребро(b)+высота основания(h) – образуют
треугольник(Abh) с вершиной , совпадающей с вершиной пирамиды.
В треугольнике(Abh) :
Перпендикуляр из вершины пирамиды на высоту основания(h) – это высота
Боковые ребра пирамиды равны => проекции боковых ребер на основание равны => основание высоты пирамиды H = центр описанной окружности радиуса R. Из равнобедренного треуг.-основания получим: высота основания=9, она же медиана, из прямоугольного треуг (гипотенуза=R, катет=6/2=3, второй катет=9-R) по т.Пифагора
(9-R)^2 + 3*3 = R^2
9*9 - 18R +R^2 + 3*3 - R^2 = 0
18R = 81+9
R = 90/18 = 5
Из прямоугольного треуг. (гипотенуза=боковое ребро=13, катет=Н пирамиды, второй катет=R) по т.Пифагора H^2 = 13*13 - R^2 = 13*13 - 5*5 = (13-5)*(13+5) = 8*18 = 4*2*2*9
Боковые ребра пирамиды равны => проекции боковых ребер на основание равны
ЭТО утверждение верно , если в основании лежит РАВНОСТОРОННИЙ треугольник и вершина проецируется в его ЦЕНТР. Но по условию Основанием пирамиды служит равнобедренный треугольник
В пирамиде ребра b=13 см
В равнобедренном треугольнике
- высота h= 9 см
- основание/сторона a=6 м
Боковая грань, которая опирается на сторону ( а) –это равнобедренный треугольник.
Апофема этой боковой грани по теореме Пифагора
A^2=b^2-(a/2)^2 =13^2-(6/2)^2=160 ; A=4 √10 см
Апофема(А)+противоположное ребро(b)+высота основания(h) – образуют
треугольник(Abh) с вершиной , совпадающей с вершиной пирамиды.
В треугольнике(Abh) :
Перпендикуляр из вершины пирамиды на высоту основания(h) – это высота
пирамиды (Н).
Угол <A между (h) и (b) напротив апофемы (А).
По теореме косинусов A^2 = h^2+b^2 -2*h*b*cos<A
Cos<A = (h^2+b^2 –A^2) / (2*h*b)= (13^2+9^2 - 160) / (2*13*9)=5/13
Тогда sin<A = √ (1-(cos<A)^2) =√ (1-(5/13)^2)=12/13
Площадь треугольника(Abh) можно посчитать ДВУМЯ
S ∆ = 1/2* H*h
S ∆ = 1/2* b*h*sin<A
Приравняем правые части
1/2* H*h = 1/2* b*h*sin<A
H = b*sin<A = 13*12/13 =12 см
ответ 12 см
Боковые ребра пирамиды равны => проекции боковых ребер на основание равны => основание высоты пирамиды H = центр описанной окружности радиуса R.
Из равнобедренного треуг.-основания получим: высота основания=9, она же медиана, из прямоугольного треуг (гипотенуза=R, катет=6/2=3, второй катет=9-R) по т.Пифагора
(9-R)^2 + 3*3 = R^2
9*9 - 18R +R^2 + 3*3 - R^2 = 0
18R = 81+9
R = 90/18 = 5
Из прямоугольного треуг. (гипотенуза=боковое ребро=13, катет=Н пирамиды, второй катет=R) по т.Пифагора H^2 = 13*13 - R^2 = 13*13 - 5*5 = (13-5)*(13+5) = 8*18 = 4*2*2*9
H = 4*3 = 12