Обозначим эти пропорции как 1х, 2х, 5х. Зная, что сумма углов треугольника составляет 180°, составляем уравнение:
х+2х+5х=180
8х=180
х=180÷8
х=22,5°. Первый угол=22,5° Теперь найдём остальные углы:
22,5×2=45° - это второй угол
22,5×5=112,5°- это третий угол
Задача 4:
Пусть угол при основании будет "х", тогда угол вершины будет = х+60. Зная, что сумма всех углов треугольника равна 180°, составляем уравнение:
х+х+(х+60)=180
2х+х+60=180
3х+60=180
3х=180-60
3х=120
х=120÷3
х=40; каждый угол при основании =40°; угол вершины=40+60=100°
Задача с треугольником 1:
В прямоугольном треугольнике угол А= 180-90-30=60°, угол А=60°
Так как катет АВ лежит напротив угла С, который =30°, то АВ= половине гипотенузы, значит гипотенуза АС в 2 раза больше АВ, из этого следует что АС= 11×2=22(см). Итак: АС=22см; угол А=60°
Задача с треугольником 2
Рассмотрим ∆ЕСК. Если медиана КР является ещё и высотой, значит этот треугольник равнобедренный и КР будет также и биссектрисой, которая разделит угол К пополам, и каждый угол будет по 45°. Если он равнобедренный, то КС=КЕ=14см. Найдём по теореме Пифагора гипотенузу ЕС:
14²+14²=196+196=√196×√2=14√2. ЕС=14√2см
Так как медиана КР делит сторону пополам, и являясь биссектрисой, делит угол, то ∆КЕР=∆КСР; стороны ЕР=РС=КР = 14√2÷2=7√2; КР=7√2(см)
1) MPDA - равнобедренная трапеция
2) 36 см²
Объяснение:
1) МР - средняя линия треугольника ВСК, поэтому
МР║ВС и МР = 1/2 ВС = 6 см
МР║ВС, ВС║AD, ⇒ МР║AD.
Значит, MPDA трапеция. А так как МА = PD = 5 см, то
MPDA - равнобедренная трапеция.
2) Проведем высоты трапеции МН и PL. MPLH - прямоугольник, так как у него все углы прямые, тогда
HL = MP = 6 см.
ΔАМН = ΔDPL по гипотенузе и катету (∠АНМ = ∠DLP = 90°, так как проведены высоты, АМ = DP по условию и МН = PL как высоты), значит
АН = DL = (AD - HL)/2 = (12 - 6)/2 = 3 см
ΔАМН: прямоугольный, египетский, значит МН = 4 см.
Smpda = (MP + AD)/2 · MH = (6 + 12)/2 · 4 = 36 см²
Обозначим эти пропорции как 1х, 2х, 5х. Зная, что сумма углов треугольника составляет 180°, составляем уравнение:
х+2х+5х=180
8х=180
х=180÷8
х=22,5°. Первый угол=22,5° Теперь найдём остальные углы:
22,5×2=45° - это второй угол
22,5×5=112,5°- это третий угол
Задача 4:
Пусть угол при основании будет "х", тогда угол вершины будет = х+60. Зная, что сумма всех углов треугольника равна 180°, составляем уравнение:
х+х+(х+60)=180
2х+х+60=180
3х+60=180
3х=180-60
3х=120
х=120÷3
х=40; каждый угол при основании =40°; угол вершины=40+60=100°
Задача с треугольником 1:
В прямоугольном треугольнике угол А= 180-90-30=60°, угол А=60°
Так как катет АВ лежит напротив угла С, который =30°, то АВ= половине гипотенузы, значит гипотенуза АС в 2 раза больше АВ, из этого следует что АС= 11×2=22(см). Итак: АС=22см; угол А=60°
Задача с треугольником 2
Рассмотрим ∆ЕСК. Если медиана КР является ещё и высотой, значит этот треугольник равнобедренный и КР будет также и биссектрисой, которая разделит угол К пополам, и каждый угол будет по 45°. Если он равнобедренный, то КС=КЕ=14см. Найдём по теореме Пифагора гипотенузу ЕС:
14²+14²=196+196=√196×√2=14√2. ЕС=14√2см
Так как медиана КР делит сторону пополам, и являясь биссектрисой, делит угол, то ∆КЕР=∆КСР; стороны ЕР=РС=КР = 14√2÷2=7√2; КР=7√2(см)