Решение: 1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500 25x^2=2500 x^2=100 x=-+10
-10 мы значение не берем по смыслу. Значит, x=10. Тогда 3х = 3*10 = 30(мм) 4х = 4*10 = 40(мм). 2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок: ac=a^2\c a - катет с - гипотенуза a с индексом с - отрезок. ac=900\50=18 А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм). ответ: 18 и 32 мм
Поскольку MP II AB; то ∠MPB = ∠PBA; а так как BP - биссектриса ∠ABC; то ∠MPB = ∠PBA = ∠PBC; следовательно, треугольник BMP равнобедренный, MB = MP; Если теперь вспомнить (именно в этот момент :) ), что точка M - центр окружности, описанной вокруг ABC, то есть MB = MC = MA; то это значит, что точка P тоже лежит на описанной окружности. Получается, что ∠ACP и ∠ABP оба вписанные в окружность, описанную вокруг треугольника ABC и опираются на дугу AP этой окружности. Поэтому они равны. Очевидно, что ∠ABP равен половине ∠ABC; поэтому ответ ∠ACP = 32,5°
1. Найдем катеты прямоугольного треугольника. Пусть x - 1 часть. Тогда 3х - 1 катет, 4х - второй катет. Решая уравнение по т. Пифагора, получим: 9x^2+16x^2=2500
25x^2=2500
x^2=100
x=-+10
-10 мы значение не берем по смыслу. Значит, x=10.
Тогда 3х = 3*10 = 30(мм)
4х = 4*10 = 40(мм).
2. Если катет есть среднее пропорциональное для отрезка, делящаяся высотой, проведенной из вершины угла, и гипотенузы, то выразим сам этот отрезок:
ac=a^2\c
a - катет
с - гипотенуза
a с индексом с - отрезок.
ac=900\50=18
А второй отрезок можем найти разностью между гипотенузой и этим отрезком: 50-18=32(мм).
ответ: 18 и 32 мм
Если теперь вспомнить (именно в этот момент :) ), что точка M - центр окружности, описанной вокруг ABC, то есть MB = MC = MA; то это значит, что точка P тоже лежит на описанной окружности.
Получается, что ∠ACP и ∠ABP оба вписанные в окружность, описанную вокруг треугольника ABC и опираются на дугу AP этой окружности. Поэтому они равны. Очевидно, что ∠ABP равен половине ∠ABC; поэтому
ответ ∠ACP = 32,5°